四年级数学小数的性质教案1 教学目标: 1、初步理解小数的基本性质,并应用性质化简和改写小数。 2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。 3下面是小编为大家整理的2023年四年级数学小数性质教案3篇,供大家参考。
教学目标:
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:让学生理解并掌握小数的性质。
教学难点:能应用小数的性质解决实际问题.
教学过程:
(一)、创设情境,引导探索
1师:夏天的天气非常炎热,孩子们你们爱吃雪糕吗?老师对学校附近雪糕的价格做了一个小调查,你们想了解一下吗?老师了解到校门口左边的商店雪糕的价格是0.5元,右边一家则是0.50元,那你们去买的时候会选择哪一家呢?为什么?
师:为什么0.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来学习小数的性质。(板书课题:小数的性质)
二、探究新知、课中释疑
1.教学例1
比较0.1m 0.10m 0.100m的大小
师:想一想括号里填上什么单位,才能使等式成立?
1( )=10( )=100( )
生汇报(重点讲解:1分米=10厘米=100毫米)
你能把它们改写成用米做单位的小数的形式吗?
根据学生回答归纳演示: 1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米
4)观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
5)根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”,小数的大小不变。
是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。
2.教学例2
比较0.3和0.30的大小
1)师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)
2)师:想一下你用什么办法来比较这两个数的大小呢?(利用学具,小组讨论合作)
3)在两个大小一样的正方形里涂色比较。
汇报结论:0.3=0.30
4)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(*均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
5)师:同学们,你们真了不起,通过动手操作验证得出了这个性质,这就是我们今天学习的内容-小数的性质(课件出示)
小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
6)认真读这句话,你认为那些字是非常关键或者必不可少的`?为什么?
生:末尾,因为中间的0是不能随意去掉的,去掉后就改变了小数的大小。
3.小数的化简
师:根据小数的性质,当遇到小数末尾有0时,一般可以去掉末尾的0,这就是小数的化简,你想试试看看吗?(课件出示例3)
把0.70和105.0900化简.
105.0900中“9”前面的“0”为什么不能去掉?
(0.70=0.7;105.0900=105.09)
教师强调:末尾和后面不同。
师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)
4.小数的应用
1)师:利用小数的性质不仅可以化简小数,有时根据需要,可以在小数的末尾添上0;还可以在整数的个位右下角点上小数点,再添上0,把整数改写成小数的形式,这就是小数的改写,下面我们学习例4
2)不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数.学生独立完成,全班共同订正。
(0.2=0.200;4.08=4.080;3=3.000)
思考:“3”的后面不加小数点行吗?为什么?
3)师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)
三、巩固深化,拓展思维
师:同学们的表现真棒,为了加大难度,老师设计了闯关游戏,你们有信心接受老师的挑战吗?
挑战一:判断
挑战二:连线
挑战三:智力大比拼
四、课堂小结
这节课你有哪些收获?
五、布置作业.
完成练习十1-3题。
板书设计:
小数的性质
0.1米 = 0.10米 = 0.100米
0.3= 0.30
小数的性质:小数的末尾添上0或者去掉0,小数的大小不变 。
教学目标:
1、知识目标:引导学生初步理解小数的性质;能运用小数的性质正确地化简小数和改写小数。
2、能力目标:激发学生积极主动的探究精神,培养学生归纳、分析的能力。
3、情感目标:培养学生爱学数学的情感。
教学重点:
理解小数的末尾添上“0”或去掉“0”,小数的大小不变的道理。并正确运用这一性质解决相关问题。
教学难点
掌握在小数部分什么位置添“0”去“0”,小数大小不变。
教具准备:
学习纸“小魔术”纸卡多媒体课件
课时:1课时
教学过程:
一、情景导入(小魔术)
1、师:同学们,第一次给你们上课,作为礼节,我给大家表演个魔术——数字的变化。看这是数字1?等会你们一起小声喊:1,2,3,大,老师就可以把这个数变大了。信不信?
生:1,2,3,大。
师:把1变成10,10和1比扩大了10倍,……
2、老师还有一个数0.1,我们再来试一试。
引起学生的冲突:到底变大了吗?
(设汁意图:是把枯燥的数学知识贯穿在小学生喜闻乐道的游戏中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。)
这节课,我们就来研究小数末尾“0”对小数的大小的影响。也就是我们今天要学习内容——小数的性质。
二、探求新知
(一)教学例1
1、师:0.1米、0.10米、0.100米,他们到底会不会相等呢?
师:请拿出你的学习纸把第一题完成。
汇报:请学生上台展示。填空、比较发现一样,从而得出0.1米=0.10米=0.100米。
教学中让学生说说你是怎样找出0.1米、0.10米、0.100米。
(0.1米是一位小数,它的计数单位是1/10,有1个1/10,也就是说0.1米=1/10米,把1米*均分成10分,1份就是1分米。所以0.1米=1分米。
0.10米是两位小数,它的计数单位是1/100,有10个1/100,也就是说0.10米=10/100米,把1米*均分成100分,1份就是1厘米,10份是10厘米。所以0.10米=10厘米。
0.100米是三位小数,它的计数单位是1/1000,有100个1/1000,也就是说0.100米=100/1000米,把1米*均分成1000分,1份是1毫米,100份就是100毫米。所以0.100米=100毫米。)
因为1分米=10厘米=100毫米所以0.1米=0.10米=0.100米
师:0.1米=0.10米=0.100米(板书)这三个长度是一样的,都是以“米”为单位,我们就可以把数抽象出来0.1=0.10=0.100。
(设计意图:这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识)。
仔细观察这组小数,你有什么发现?
生:小数的末尾添上“0”,小数的大小不变。
师:同学们的眼光真锐利。小数的末尾添上“0”,小数的大小不变。我现在有个疑问,其它的小数也有这样的特点吗?
师:现在请同学们翻开学习纸,根据方格图,自己想一组小数把它表示出来。
学生操作,交流汇报。
课件展示。
(教师在学习研究中要加强指导)
2、师:现在请同学们观察上面的题目中的小数,你能说出几组和它们类似的小数吗?
学生说说。
师:能说出这么多组,你们一定发现了什么规律吧?(交流,汇报)
总结:小数的末尾添上“0”或去掉“0”,小数的大小不变。
(设计意图:这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。)
3、联系生活,再现新知:还有同学们在商场看到货物的标价如:这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。
(二)小数性质的应用
1、教学例2
师:现在我们认识了小数的性质,那么应用小数的性质,我们可以根据需要对小数进行改写。
电脑演示:化简下面的小数。0.70=105.0900=
教学0.70=0.7
问:①你是怎样化简的?(根据小数的性质,去掉小数末尾的“0”就可以把小数化简)
②0.70与0.7它们的大小不变,但意义相同吗?
(不同,0.70表示70个1/100,0.7表示7个1/10)
教学105、0900=105.09
问:小数里的其他“0”可以去掉吗?为什么?(不可以,大小改变。师要强调末尾)
2、教学例3
电脑演示:不改变数的大小,把下面各数写成三位小数。
0.2=4.08=3=
师:你是如何把它改写成三位小数的?(根据小数的性质,在小数的末尾添上“0”小数的大小不变)
师:3如何改写成三位小数?这个小数点不点的话可以吗?
注意:
A、在小数的末尾添“0”。
B、当这个数是整数时,在整数个位的右下角点上小数点,再添“0”。
师:应用小数性质时,应注意什么?(小数、末尾)
三、巩固练习
课本59页的做一做。
2、开火车的形式回答59页的做一做。
问:你是怎样化简和改写这些数的?
四、全课小节
1、这节课你学到了什么?
小数的末尾添上“0”或去掉“0”,小数的大小不变。
2、我们是怎样探索小数的性质的?
在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。
板书:小数的性质
小数末尾“0”对小数的大小的影响
小数的末尾添上“0”或去掉“0”,小数的.大小不变。
0.1米=0.10米=0.100米
0.1=0.10=0.100
教学目标:
【知识与技能】
1.通过观察比较,知道小数部分的末尾添上0或去掉0,小数的大小不变。
2.能运用小数的性质,对小数进行改写和化简。
【过程与方法】
1.通过先独立思考,再小组讨论的教学手段,让学生经历自主探索的过程。
2.用图形面积相等和推算等方法比较小数0.3和0.30的大小,从而让学生自己发现得出小数的性质。
3.引导学生初步领略解题过程中常用的转化的方法。
【情感、态度与价值观】
1.经历验证的过程,培养合理的思维。
2.培养培养学生发散性思维能力。
教学重点:
小数性质的应用。
教学难点:
小数性质归纳的过程。
教学用具准备:
教具、学具、多媒体设备。
教学过程设计:
一、情景引入
1.
板书:三个1,判断相等吗?
接着在第二个1后面添写上一个0,在第三个1的后面添写上两个0,问:这三个数相等吗?(不相等)
你能想办法使它们相等吗?(添上长度单位米、分米、厘米或分米、厘米、毫米)
1米=10分米=100厘米 1分米=10厘米=100毫米。
2.(1)你能把它们改用米作单位表示吗?
0.1米= 0.10米 = 0.100米
(2) 改写成用米作单位表示后,实际长度有没有变化?(没有变化)说明什么?(三个数量相等)
3.引入新授:0添在一个数的哪里可以不改变数的大小呢?这节课我们就来研究这一方面的知识。
[灵活运用学生学过的知识,从中找到三个相等的数量,发现问题,从而揭示课题]
二、探究新知
1. 出示例1:比较0.30与0.3的大小。
(1)你认为这两个数的大小怎样?(让学生先猜一猜)
(2)可以用什么办法来证明?(给学生独立思考的时间,可以进行小组讨论合作,老师提供两个大小一样的正方形,数射线)
学生汇报:
0.3就是
, 把这个正方形看作整数1,这个正方形*均分成了10份,取这样的三份,就是
, 0.30就是
,把另一个正方形*均分成了100份,取这样的30份,就是
,从图形上发现
=
,所以 0.3=0.30。
推算10个0.01是0.1
30个0.01是0.3
所以0.3=0.30
把0.3和0.30标在数射线上,发现0.3=0.30。
(3)从比较中中发现了什么?
(小数部分的末尾(后面)添零,它的大小不变。小数部分的末尾(后面)去掉零,它的大小不变。)
末尾和后面哪个更好?
(4)这就是今天我们要学习的小数的性质。(出示课题:小数的性质)
板书:小数部分的末尾添上0或去掉0,小数的大小不变。
2. 利用小数的性质举例。
[通过先独立思考,再小组讨论的教学手段,用图形面积相等和推算等方法比较小数0.3和0.30的大小,从而让学生自己发现得出小数的性质。]
三、巩固练习
1. 根据小数的性质,遇到小数末尾有0的时候,一般可以去掉末尾的0,这过程就是把小数化简。
利用小数的性质化简下面各小数:
6.0=( ) 3.500= ( ) 3.340=( )
这样做的根据是什么?(把小数末尾的0去掉,小数的大小不变)
2. 判断:不改变小数大小,下面哪些0可以去掉,哪些0不可以去掉?
0.730 36.070 108.800 10.0
3. 有时根据需要,利用小数的"性质来改写小数。
不改变大小,把下面各数改写成三位小数
8.01= 9.8= 6=
改写小数时你想提醒同学们需要注意什么?
(1)不改变原数的大小;
(2)只能在小数的末尾添上0;
(3)把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添0。
4. 当小数部分的位数不同时,可以怎么比较小数的大小?
比较3.14与3.141
(把3.14改写成3.140,就可以从高位起依次比较每个数位上的数字。01 所以3.143.141)
比较下面每组中两个小数的大小:
5.28( )5.2 0.61( )0.612 6.37( )6.375
[通过一系列练习,使学生明确了小数性质的两大运用:把小数改写和化简。]
四、课堂小结
今天我们学习了什么?
生活中你有没有用到过小数的性质?(价格标签)
——四年级数学下册第四单元教案《小数的性质》10篇
教学内容
人教课标版小学四年级下册第38、39页的内容:小数的性质
学情分析
小数的性质是任教版义务教育教科书四年级下册第38、39页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。
教学目标
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
教学重难点
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
教法与学法
1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
3、培养学生共同合作,相互交流的学习方法。
教学准备
多媒体课件
教学过程
一、复习旧知,导入新课
1、师:同学们,上节课我们学习了什么?(小数的意义)那么在学习新知识之前,让我们一起来复习一下上节课的内容吧!
2、《西游记》同学们都看过没有,那么你们知道《西游记》中都有那些人物(学生自由回答)。
课件展示:有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了标有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位师弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话微笑着点了点头。
师:你知道唐僧听了悟空的话为什么会微笑着点了点头?学了今天的知识你就知道为什么了。
板书课题:小数的性质
设计意图:联系生活实际,达到知识的迁移。
二、提出问题、探索新知
1.出示例1:
⑴师:同学们,这把尺子多长呢?(10厘米)你们还能不能用不同的长度单位来表达出它的长度呢?老师点名提问个别学生来回答。
学:1分米、100毫米。
⑵师;请同学们运用所学有关“小数的意义”的知识,把它们改写成用“米”作单位的小数。
学生独立完成,教师巡视指导个别不会的学生。
⑶教师指名个别学生回答,并对个别表现好的学生给予表扬。
生1:0.1米是1/10米,就是1分米
生2:0.10米是10/100米,就是10厘米
生3:0.100米就是100/1000米,就是100毫米
师:现在老师有个问题请大家帮忙解决一下,0.1米、0.10米和0.100米的大小如何呢?
学生回答,教师总结。
板书:1分米=10厘米=100毫米
0. l米=0.10米=0.100米
设计意图:学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的`能力,培养了运用数学知识的意识。
⑷观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。
教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.小数中间的0不能去掉.
师质疑:那整数有这个性质吗?
学生分小组讨论,并举例证明得出结论。
(师强调出小数与整数的区别)
设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。
2、教学例2
(1)多媒体出示38页例2:比较0.30与0.3的大小
师:任写一个数,在它的末尾添上一个‘0’或者两个‘0’,用自己的方法验证他们的关系是否相等。
(2)师:刚才同学们用自己的方法证明了我们的发现,想不想知道老师是如何验证的?
①老师将两个同样大小的正方形*均分成了10份和100份,把其中的30份写成小数就是0,30,另一个正方形取其中的3份就是0.3,将两个正方形移动,重合比较,会是什么结果?
②请大家闭上眼睛想象一下,再睁开眼睛观察屏幕,和你想象的一样吗?可以写一个怎样的等式?
汇报结论:0.3=0.30
(3)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(*均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。
三、课堂检测
1、运用小数的性质时应注意什么?
0.70(去掉末尾的0,大小会变化吗),2.07(去掉中间的0会怎样),0,7(末尾加个0会怎样)?
提示:根据小数的性质,只有小数末尾的“0”去掉之后,才不会改变数的大小。小数中间的“0”和整数部分的“0”不能去掉,因为那样小数其他数位上的数就发生了变化。
2、判断
(1)小数的末尾添上“0”或去掉“0”,小数的大小不变,意义也不变。 ( )
(2) 0.508去掉小数部分的0,这个小数的大小不发生变化。 ( )
(3)因为2和2.0相等,所以它们都是整数。 ( )
(4) 0.8与0.80大小一样,计数单位也一样。 ( )
3、下面哪些小数中的“0”去掉后,小数的大小没有发生变化?
7.03、4.90、8.10、0.02、3.70
4、按要求说出一个数。
①所有“0”都不能去掉。
②所有“0”都能去掉。
③既有能去掉的“0”,又有不能去掉的“0”。
5、谁能只动两笔就可以在5、50、 500之间画上等号?
5=50=500
四、本课小结
通过这节课的学习,你有哪些收获?
五、作业布置
课本41页练习十:1、2、3
板书设计
小数的性质
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
小数的末尾添上或去掉“0”,小数的大小不变。
教学目标:
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
教学重难点:
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
教学过程:
一、创设情境,引入新课
师:同学们,认识这个数么?(出示卡片5)老师会变魔术,我能这个数变大,在它的末尾添上一个“0”,这个5发生了什么变化?
生:扩大了10倍。
师:我还能让它变大,现在又发生了什么变化?现在的数和“5”相比,末尾添了几个“0”,它的大小发生了什么变化?
生:末尾添了2个“0”,扩大了100倍。
师:那我们能让它变小么?
生:把末尾的“0”去掉。
师:现在去掉一个“0”,这个数发生了什么变化?再去掉一个“0”呢?
生:略。
师:看来在整数的末尾添上或去掉“0”,整数也随之扩大或缩小。那再看看这个数“0.5”,我在这个小数的末尾添上“0”这个数会变么?
生:不会变。
师:那我再添上一个“0”呢?
生:还是不变。
师:你是怎么知道的?
生:略。
师:所以你认为在小数的末尾添上“0”或去掉“0”小数的大小不变。(板书)这只是你的猜测,所以老师先在后面打上一个问号。刚刚某某同学说的只是一个个例,不具有普遍性,那如果要证明它具有普遍性,该怎么办呢?
生:验证。
二、讲授新课
师:在这老师给你们几点建议。先写出一个小数,在它的末尾添上“0”或者去掉“0”。利用手中的学习材料研究,或者借助已有的知识进行说明,小组合作,证明猜想,并记录在乐学单上。可以证明一组或者几组。小组内交流研究方法后,全班汇报。这些清楚了么?现在我给大家一点时间,开始。
(生动手操作)
师:好了,同学们。我发现大家的智慧真了不起,在短短的时间内研究的都很不错。那我们接下来开始汇报,在汇报前老师还有一个要求,一个组在汇报的时候,其他小组认真倾听,听完之后看看你们组研究的方法与他们一不一样,再做补充,在汇报的时候要说明两件事,你们是怎么验证的?你么验证的结果是什么?哪个小组先来汇报?
(生汇报)
师:这位同学描述的非常完整,而且通过他们的操作我们更一目了然了,还有哪个小组也是用了正方形纸来验证的,说说你们验证的结论。
生:略。
师:有没有哪个小组是借用皮尺来验证的,谁来说一说?
(生汇报)
师:老师也准备了一把米尺,我把一米*均分成10份,取了其中2份,是2分米用小数表示也就是0.2米,把一米*均分成100份,取了其中20份,是20厘米用小数表示就是0.20米,再把一米*均分成1000份,取了其中200份,是200毫米用小数表示就是0.200米,它们都表示这段长度,所以0.2=0.20=0.200,结论是在0.2的末尾添上“0”小数的大小不变。
师:有哪个小组是借用数位顺序表来验证的么?
(生汇报)
师:还有哪个小组也来说说你们组研究的结果。
师:刚才我们借用了教具来验证我们的猜想,有没有哪位同学是借助已有知识来验证的?前面我们已经学过了小数的意义……
生:略。
师:我们再来看看开始是的卡片,整数5,5在什么位表示什么?在它的末尾添上一个“0”,5被挤到什么位,表示什么?再添上一个“0”5又被挤到什么位表示什么?5的位置发生了变化么?由于5的位置发生了变化,那你们认为他的大小会怎么样?
生:略。
师:整数是这样,我们再看看小数,这是小数0.5,这时5在什么位表示什么?在0.5的末尾添上“0”,这时5在什么位表示什么?再添上一个“0”这时5在什么位表示什么?
师:5的位置有没有发生变化,照这样看,无论在0.5的末尾添上多少个0,5的位置不变,小数的大小也不变。
师:刚才我们举了那么多例子,都是在末尾添0的,从左往右看是单向思维,如果我们从右往左看,你们发现了什么?以这个为例谁来说一说。
生:略。
师:你们真棒,如果我们把从左往右和从右往左合成一句话,会是什么?
生:略。
师:在小数末尾添上0或去掉0小数的大小不变后面的问号是不是可以去掉了?我们发现的这个规律就是小数的性质,(板书)这是大家共同探究出来的,大家一起齐读一遍。
三、巩固练习
师:这是一张购物小票,老师圈出了几个数,你们认为这几个小数当中哪些0是可以去掉的?
生:略。
师:1.05中的0可以去掉么?
生:不能,因为0不在末尾。
师:那你们认为在小数性质这句话中,哪个词是最重要的?
生:末尾。
师:接下来,我们来看这题,你们知道什么是化简么?
生:略。
师:把末尾的0去掉,没有改变小数的大小,这样是不是更简单呢?那谁来回答这几题?
生:略。
师:其实在不改变小数大小的情况下,我们除了可以化简还可以改写。把小面小数改写成三位小数。
生:略。
师:今天我们学习了小数的性质,大家知道了什么?
生:略
师:老师根据本节课的内容设计了一幅思维导图,课后请同学们叶发挥自己的想象,根据本节课的内容设计一幅美观,内容详实的思维导图。
师:好的同学们,今天这节课上到这,下课。
教学目标:
1.掌握小数的性质,会应用小数的性质化简改写小数。
2.培养学生合作能力和口语表达能力。
3.体验学习数学的乐趣。
教学重难点:
引导学生积极探索,发现并理解小数的性质。
教学过程:
一.激趣引入:
出示1 10 100
师:这几个数熟悉吗?(熟悉),今天就让我们用100分的热情,10分的认真,上1节快乐的数学课。你们能做到吗?(能)。上课
1.提出问题:
首先,李老师想请你们来当小裁判,有两位同学发生了这样一件事:(看大屏幕)
小方:我买了一个本子,用了0.30元
小雨:我买了这样一个本子,只花了0.3元,比你便宜
小方:不对,我们俩花的钱同样多
2.引发猜想:
师:你们来当当裁判,他们谁说的对?
生:小方说的对。
师:0.3=0.30(板书在黑板上)
二.自主互助
引导学生验证探索理解小数的性质
我们学数学要有理有据,那么,你们的猜想0.3=0.30,对不对,还需要你们进行验证。
1.小组合作验证猜想:(明确要求)
A.选择一种你认为最拿手的方法验证。
B.要求分工明确
2.小组汇报:
a涂格子的的方法验证。
师:你们的方法真好,利用图形来验证,形象直观.
b用长度单位来验证。
0.3米=(3/10)米=(3)分米
0.30米=(30/100)米=(30)厘米=(3)分米
师:你们的结论是0.3米=0.30米。单位相同都是米。
所以0.3=0.30.
你们用常用的长度单位来验证再一次证明了0.3=0.30,还有其他的方法吗?
c用人民币的单位验证。
0.3元=(3)角
0.30元=(30)分=(3)角
师:你们用熟悉的钱数来验证,简洁好想,真不错。
d.拓展发现:(还能写出这样的一组数)
0.300米=(300)毫米=(30)厘米
结果:0.3=0.30=0.300
生:在小数的末尾添上“0”或去掉“0”,小数的大小不变。
生:板书.师补充课题《小数的性质》
师:这句话中,你认为哪个词是关键词,“末尾”。为什么?
3.合作结论:小数的末尾添上“0”或去掉“0”,小数的大小不变。(再读一遍)
三.快乐闯关
第一关:下面各数末尾添上“0”后,发生了哪些变化?同桌之间互相说一说。说说你发现了什么?
18 0.06 3.0 120 700 10.01
第二关:下面的数如果末尾添上“0”,哪些数的大小不变?哪些数的大小会变?
3.4 150 9.08 104.03
31.00 42.1 52.01 35
第三关:判断
1、12.8和12.80的大小一样,但计数单位不一样。()。
2、在小数上添“0”或去掉“0”,小数的大小不变。()
3、908的未尾添上两个“0”,数的大小不变。()
第四关:化简下面各数
0.40 1.8500 2.900
0.080 12.000 0.020
第五关:不改变数的大小,把下面各数写成三位小数。
0.9 30.04 5.4 8.18 14
四. 总结:
1.说说你的收获。
2.评价一下自己和你的伙伴。
五.板书设计:
小数的性质
小数末尾添上“0”或者去掉“0”,小数的大小不变。
教学内容:人教版数学第八册第四单元“小数的性质”
教学目标:
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:
让学生理解并掌握小数的性质。
教学难点:
能应用小数的性质解决实际问题
教学过程:
一、谈话导入、课前质疑
1、师:今天老师给同学们准备了一个小魔术,我们来看看。
这个数认识吗?几呀?出示数字卡片:1
我能让这个数变大,看仔细哟。(添了一个0)
这个1的末尾添了一个0,这个数发生了什么变化?
老师还能把这个数变小,知道怎么变吗?就要把末尾的0(去掉),看着啊。
看来,我把整数末尾的0去掉,这个数就缩小。那100去掉末尾两个0,大小怎么变化的?(缩小了100倍,好极了)
师:刚才我将这个整数的末尾添上0,这个整数就变大了,我又将这个整数的末尾去掉0,这个整数就变小了。
2、师:接下来再变一个小数的魔术。这是几?(0.1)看着啊,老师还能把它变大。变大了吗?
这可奇怪了,刚才整数的末尾添上0,这个数会变大,整数的末尾去掉0,这个数就会变小,那我在小数的末尾添上0或去掉0,小数的大小变不变呢?你认为呢?
在小数的末尾添上或去掉0,小数的大小不变,这只是大家的猜想,这个猜想对不对呢?这就需要大家一起来验证一下。
板书:猜想验证
二、探究新知、课中释疑
1.探究0.1米,0.10米,0.100米的大小
(1)有以有的知识来解释一下这三个数的大小。
请比较一下它们的大小。
板书:1分米=10厘米=100毫米
(2)导入例1:
你能把它们都写成用米做单位的小数的形式吗?必须体现它们的原先单位。
导:分米和米有什么关系?厘米、毫米呢?
根据学生回答归纳演示:
1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
学生很快回答后课件演示。并在他们之间加上等号。
我们还可以用重合法比较一下。(课件演示)
(3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米
提问:这说明了什么问题?
请大家仔细观察这个等式,可以从左往右看,再从右往左看,什么变了?什么没变?在什么地方多(少)0?在这个小数的什么位置?多(少)0还可以怎么说?
小数的末尾添上0大小不变,去掉0大小也不变。是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。
2.教学例2。
(1)比较1.30和1.30的大小。
导:想想0.30表示什么意思?0.3呢?应该涂多少格?
学生涂完色问:你为什么这样涂?之后演示涂色过程。
(2)同桌商量比较,汇报结论。
问:谁涂的面积大?1.30和.1.3的大小怎样?你是怎么知道的?
直观比较法:看上去都一样大;
理论推导法:1.30是130个1/100,也是13个1/10;1.3是13个1/10。
课件演示重合图形。(在原板书下再板书:1.30=1.3)
(3)观察思考
观察板书1.30=1.3
这个例子说明了什么?看来不仅仅是个特例,再次验证我们的猜测。
3.讨论归纳
教师指着板书说:你能把上面的研究结论归纳成为一句话吗?4人小组之间讨论一下,想想该怎么说才比较完整?
教师提问几个小组代表让其归纳,不够完整可以由其他小组代表补充。得出小数的性质:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质.(课件展示)
4、指导阅读。
讲述:书上也证实了我们的研究,并把它称为“小数的性质”。齐读小数的性质。
5、质疑问难:(判断)
你们对这句话理解的够不够透彻呢?挑战一下你们。(以下题目陆续出现)
(1)一个数的末尾添上“0”或去掉“0”,这个数的大小不变。
举例说明后返回小数的性质,红字强调“小数”。
(2)小数点的后面添上“0”或去掉“0”,小数的大小不变。
举例说明后返回小数小性质,红字强调“末尾”。
(3)10.50=10.5=10.500 判断后返回小数小性质强调“大小不变”。
三、巩固运用、交流反思
小数的性质有什么作用呢?
强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.
l.出示例3:把0.70和105.0900化简。
思考:哪些“0”可以去掉,哪些“0”不能去掉?
(1)提问:0.70你认为可以怎么化简才能大小不变?
(2)学生自己完成。指名回答,让其说说这样做的根据是什么?
(3)为什么105.0900的5左边的0不能去掉呢?(强调小数的性质中“小数的末尾的0”。)
(4)练习:下面的数,哪些“0”可以去掉?哪些¨0“不能去掉?
0.40 1.820 2.900 0.080 12.000
回答后小数末尾的0红色闪现。
问12应该去掉0后是多少?还可以怎样表示?
强调:12去掉0后,小数部分没有数,可以把小数点也去掉。
过渡:同样,应用小数的性质,我们还可以根据需要,把一个数改写成含有指定小数位数的小数
2.出示例4:。
不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。
想想可以怎么做?
(1)学生自己完成。
(2)大家这样做的根据是什么?3能不能直接在后面添0?
(3)练习:下列数如果末尾添”0“,哪些数的大小不变,哪些数的大小有变化?
3.4 18 0.06 700 3.0 4.90
整数和小数用不同的颜色区分。
如果整数想改成大小不变的小数,必须先做什么?(先添上小数点,再添0)
五、课堂小结
1.这节课你学到了哪些知识?有哪些收获?
一、教学内容:
人民教育出版社出版的原通用教材六年制小学课本《数学》第八册第73页例1——例4。
二、教学目的:
使学生掌握小数的性质,能运用小数的性质化简小数,能根据实际需要不改变原数的大小,写成指定位数的小数。
三、学具准备:
同桌的两名学生准备用硬纸条做的米尺一把;长短不一的纸条(长度要大于5分米);剪刀一把。
四、教学过程:
师:(板书:0.6元0.60元)
0.6元、0.60元各表示多少钱?说明了什么?
生:0.6元表示6角钱,0.60元也表示6角钱。说明了0.6元等于0.60元。
师:很好。(板书:0.6元=0.60元)
师:(板书:5、50、500)
“5、50、500”是三个大小不同的数,谁能添上不同的单位名称使它们所表示的量相等?
生:5元、50角、500分。
生:5分米、50厘米、500毫米。
生:5米、50分米、500厘米。
师:同学们都发表了自己的意见,现在我们选其中的一组来研究。(板书:5分米50厘米500毫米)
这三个数量相等吗?请同学们拿出准备好的长纸条,再拿出自己用硬纸条做的米尺,第一大组的同学在长纸条上量出5分米的长度,剪下来,第二大组的同学在长纸条上量出50厘米的长度,剪下来,第三大组的同学量出500毫米的长度,剪下来。(学生操作、教师巡视)
师:同学们量得很好,请每个大组交上来一张剪好的纸条。(教师依次把5分米、50厘米、500毫米长的纸条对齐贴在黑板上)你看出了什么?
生:我看出了三张纸条一样长。
师:对,这说明了5分米=50厘米=500毫米。
[教师在黑板上的5分米、50厘米、500毫米中间添上等号]
师:谁能把5分米、50厘米、500毫米改写成用米作单位的小数?
生:5分米是0.5米,50厘米是0.50米,500毫米是0.500米。
师:(板书:对齐上面板书的5分米、50厘米、500毫米,分别在它们的下面写上0.5米、0.50米、0.500米)
0.5米、0.50米、0.500米相等吗?为什么?
生:相等。因为5分米=50厘米=500毫米。
师:[板书:0.5米=0.50米=0.500米]
师:我们再来比较0.3和0.30的大小(见图30)。
请同学们拿出印好的两个正方形,用阴影分别表示出0.3和0.30。(同时请一名学生在幻灯片上的正方形中分别画上阴影,表示出0.3和0.30)
师:(教师巡视)很好,同学们都画完了,请看幻灯演示:用抽拉片将两个正方形中的阴影部分重合]同学们看出了什么?
生:0.3等于0.30
师:(板书:0.3=0.30)请同学们观察0.3和0.30有什么相同的地方?
生:0.3和0.30都是小数。
生:它们的整数部分都是0,十分位上都是3。
生:它们的大小都不够1。
生:它们的大小相等。
师:再看看它们有什么不同的地方?
生:0.3是一位小数,0.30是两位小数。
生:0.3的百分位上没有0,0.30的百分位上有0。
师:同学们说得都对,它们最主要的相同点是大小相等,最主要的不同点是0.30的百分位上有个“0”,现在看看这个“0”在小数的"什么地方?
生:这个“0”在小数的最后面。
生:这个“0”在小数的末尾。
师:对,这个“0”在小数的末尾。今天我们专门来研究小数末尾的“0”。
[教师指着板书的等式0.3=0.30]从左往右看有什么变化?
生:小数的末尾添了个“0”。
师:从右往左看有什么变化?
生:小数的末尾去掉了“0”。
师:它们的大小变了吗?
生:它们的大小没变。
师:请同学们再看前面板演的等式。
0.5米=0.50米=0。500米
从左往右看小数的末尾怎样?
生:小数的末尾添上了“0”。
师:从右往左看小数的末尾怎样?
生:小数的末尾去掉了“0”。
师:它们的大小变了吗?
生:它们的大小没有变。
师:[再指着第一次板演的等式0。6元=0。60元]请同学们从左往右看,再从右往左看,你发现了什么规律?它们的大小怎样?
生:从左往右看小数的末尾添上了“0”,从右往左看小数的末尾去掉了“0”,它们的大小没有变。
师:同学们观察得很好,这就是今天我们要学的“小数的性质”。(板书课题)请同学们打开书第74页看第二段,谁来读?
生:(读)小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。
师:(在黑板上出示小数的性质)小数的性质分几部分内容?请你讲一讲。
生:分两部分内容,一是小数的末尾添上“0”,小数的大小不变,二是小数的末尾去掉“0”,小数的大小不变。
师:很好!学习小数的性质有什么用途呢?请同学们看第74页第三段。[看完后请学生回答]
生:根据小数的性质可以把小数化简。
师:对,怎样化简小数呢?
(出示例3)把0.70和105.0900化简。
生:把0.70末尾的零去掉。
师:(板书:0.70=0.7)
105.0900这个小数化简时只能去掉哪里的“0”?谁上来指一指?
生:只能去掉小数末尾的“0”。
师:(板书:105.0900=105.09)
下面我们进行巩固练习(做练习十九第2、3两题)。
1、下面的数,哪些“0”可以去掉,哪些“0”不能去掉?
3.90 0.300 1.8000 500
5.780 0.0040 102.020 60.06
2、化简下面的小数。
0.40 1.850 2.900 0.50600
0.090 10.830 12.0000 0.0750
(学生做练习,教师巡视、辅导,然后集体订正,及时反馈矫正)
师:学习小数的性质还有什么用途呢?请看课本第74页第四段,看完后回答。
生:根据需要可以在小数的末尾添上“0”。
生:可以把整数改写成小数的形式。
师:对。(出示例4)
例4 不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。
生:0.2=0.200。
生:4.08=4.080。
师:很好,根据什么可以这样改写?
生:根据小数的性质:小数的末尾添上“0”,小数的大小不变。
师:怎样把“3”改写成小数部分是三位的小数呢?
生:在“3”的右下角点上小数点,再添上3个“0”,3=3.000。
师:很好,在整数的个位右下角点上小数点,再添上“0”,就能把整数改写成小数的形式。下面我们进行练习(做练习十九第4、5两题)。
1、用“元”作单位,把下面的钱数改写成小数部分是两位的小数。
3元2角 18元 6角 1元零3分
2、不改变数的大小,把下面的数改写成小数部分是三位的小数。
5.4 3 0.04 7 8.01
13 4.87 0.9 185.34
(学生做练习,教师巡视辅导,集体订正)
师:(挂出小黑板)我们再进行下一项练习。
3、把左右两边相等的数用直线连接起来。
0.300 2.08
0.003 2.80
2.080 0.030
2.800 20
20.00 0.3
(请一名同学在小黑板上连线)
师:为什么0003不和0。030连接起来呢?
生:因为0。003和0。030不相等。
师:对。请同学们再看下一道判断题。
4、判断(对就打“√”,错就打“×”)。
小数点末尾添上“0”或者去掉“0”,小数的大小不变,这叫做小数的性质。( )
(请一名同学在小黑板上判断)
师:这位同学打的是“×”,错在哪里?
生:应该是:小数的末尾添上“0”或者去掉“0”,小数的大小不变。而不是“小数点”末尾添上“0”或去掉“0”小数的大小不变。
师:今天我们学的是小数的性质及它的用途。同学们学得很好。
教学目标
1、引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写。
2、培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力。
3、培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点。
教学重点
让学生理解并掌握小数的性质。
教学难点
能应用小数的性质解决实际问题。
教学过程
一、激趣导入
1、小组交流“商品标价记录单”,请两名学生上来展示。
2、电脑出示1:某超市手套、毛巾的标价,导入新课。
(在某超市商店里,老师看到:手套每双2.50元,毛巾每条2.5元。这里的2.50元、2.5元分别是( )元( )角,它们的价钱相同,为什么写法可以不同呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。)
3、揭示学习目标。
问:看到“小数的性质”这个课题,你认为这节课我们要学习什么内容?(结合学生回答,板书“性质”、“应用”)
二、探究新知
(一)理解小数的性质
1、做一做 做一做 1,得出 0.30=0.3
做一做 2,得出0.6=0.60=0.600
2、引导观察(思考讨论)0.6=0.60=0.600
(1)从左往右看,小数末尾有什么变化?小数大小有什么变化? (2)从右往左看,小数末尾有什么变化?小数大小有什么变化?你能得出什么结论?
(启发学生归纳出:在小数的末尾填上“0”,小数的大小不变;在小数的末尾去掉“0”,小数的大小不变。)
3、归纳小数的性质:
通过研究,你能把上面的两个结论归纳成为一句话吗?
教师概括:在小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。
(在整数的末尾添上或去掉“0”,整数的大小会有什么变化?)
4、辨别:下面各数中的“
0”,哪些“0”是属 于小数末尾 的“0”。
(电脑显示)
(二)小数的性质应用
(1)教学例1。
①设问导入。问:你认为小数的性质有什么作用?学生很容易回答出小数性质的第一个作用。教师强调,根据这个性质,遇到小数末尾有0的时候,一般地可以去掉末尾的0,把小数化简。 (板书“化简”)
②投影出示例1,让学生尝试练习。
把0.90和205.0800化简
思考:哪些“0”可以去掉,哪些“0”不能去掉?
205.0800中“8”前面的“0”为什么不能去掉?
(0.90=0.9;205.0800=205.08)
完成“练一练”第1题
(2)教学例2。
①让学生解答导入新课中提出的问题,结合学生回答,教师说明:利用小数的性质,根据需要可以“把一个数改写成具有指定小数位数的小数”。(板书“改写”)
②投影出示例2,学生尝试练习。
不改变数的大小,把0.3、4.06、8改写成小数部分是三位的小数。
(0.3=0.300; 4.06=4.060; 8=8.000)
思考:“8”的后面不加小数点行吗?为什么?
完成“练一练” 第2题
③ 讨论:改写小数时一定要注意什么?
改写小数时一定要注意下面三点:
A.不改变原数的大小;
B.只能在小数的末尾添上0;
C.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添0。
(三)学生看书质疑。
三、巩固练习
1、练习十七 第1题
重点指导学生说一说为什么有些“0”不能去掉的。
2、练习十七 第2题
重点指导学生说一说为什么有些数的末尾添上“0”,原数就发生了变化。
3、综合练习 (电脑显示)
四、课末回顾、反思
一、说教材
1.教学内容:苏教版小学数学第九册第三单元认识小数第三课时,“小数的性质”(课本第34-3 5页,例5—例6)。
2.教材所处地位:本节是系统学习小数的开始,为后面学习小数四则计算做了必要的准备,起铺垫作用。
3.教学目标:
(1)让学生在现实的情景中通过猜想、验证以及比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质化简或改写小数。
(2)学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。
4.教学重点:掌握小数的性质。
5.教学难点:理解小数的性质。
二、说教法
通过直观、推理让学生充分感知,然后经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。
三、说学法
通过本节教学使学生学会运用直观的教学手段理解掌握新知识,学会有顺序地观察问题、对比分析问题、概括知识及联想的方法。
四、教学程序
(一)情景导入激趣揭题
(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.100米、0.10米、0.1米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。
同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)
这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。
(二)讲授新课
1、教学例5,初步感知
(1)出示例五情景图,两位同学购买学习用品后在交流购物情况,你从图中能获取哪些信息?(小明:“我买1枝铅笔用了0.3元”。小芳:“我买1块橡皮用了0.30元”。)
(2)提出问题:橡皮和铅笔的单价相等吗?为什么?你能想办法证明吗?先独立思考,有想法后4人小组交流。
(3)全班交流,归纳方法:
①用具体钱数解释:0.3元和0.30元都是3角,所以0.3元=0.30元
②结合计数单位理解:0.3是3个0.1,0.30也可以看作3个0.1,所以0.3=0.30
③用图表示:把两个同样大小的正方形分别*均分成10份、100份,其中的3份、30份分别用0.3、0.30表示。因为阴影部分大小相同,所以0.3=0.30。
(4)感知与体验:同学们想出了多种办法都能证明0.3元=0.30元,说明这两个小数确实相等。
教师引读0.3元=0.30元,谈话:从左往右看,小数末尾有什么变化?小数的大小怎样?你有了什么想法?使学生初步体验小数的末尾添上“0”,小数的大小不变。
2、教学“试一试”,加深体验
比较0.100米,0.10米和0.1米的大小。
首先让学生拿出事先准备好的米尺(10厘米以上),在米尺上找出100毫米、10厘米、1分米是同一点,说明:100毫米=10厘米=1分米。
请同学们看米尺想,独立填写下表,集体讲评。
板书:因为100毫米=10厘米=1分米
所以0.100米=0.10米=0.1米
在这里应用直观演示法,变抽象为具体。
A.从左往右看,是什么情况?(小数的末尾去掉“0”,小数大小不变)。
B.从右往左看是什么情况?(小数的末尾添上“0”,小数大小不变)。
C.由此,你发现了什么规律?(小数的末尾添上“0”或去掉“0”,小数的大小不变)。
在这里应用了比较法,便于发现规律,揭示规律,总结性质。
小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。
为了帮助学生对小数性质的理解,教师强调指出:为什么在小数的末尾添“0”或去“0”,小数的大小就不变呢?(因为这样做,其余的数所在数位不变,所以小数的大小也就不变。举例说明)小数中间的零能不能去掉?能不能在小数中间添零?(都不能,因为这样做,其余的数所在数位都变了,所以小数大小也就变了。举例说明)整数是否具有这个性质?(没有,理由同上第二点)。
3、教学例6
(1)示情景图,让学生观察,并从图中能看出哪些信息。
(2)根据题目的要求各自在书上填空。
(3)提问:3.05元中的“0”为什么不可以去掉?
根据这个性质,通常可以去掉小数末尾的“0”,把小数化简。
试一试
不改变小数的大小,把0.4、3.16、10改写成三位小数。
0.4=3.16=10=
改写这三个数时应用了什么知识?为什么给三个数填上的“0”的个数不同?10是整数怎样把它改写成大小不变的三位小数?
强调:改写小数时一定要注意下面三点:
A.不改变原数的大小;
B.只能在小数的末尾添上“0”;
C.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添“0”。
(三)巩固练习
1.练一练第1题
完成后观察每组中的两个数,你有什么发现?
(0.1和0.10,0.2和0.20,0.3和0.30每组里的两个数对应于数轴上的同一个点,说明小数的性质确实存在的。0.1=0.10,数轴上这个点还可以用哪些小数来表示)
2.练一练第2题
为什么0.5和0.50的大小相等,而0.5和0.05的大小不等?
(四)课堂作业:练习六第3题----第5题
(五)总结延伸
通过本课的学习,你有什么收获和大家分享?我们是怎样探索小数的性质的?
在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。
附板书设计:
小数的性质
例5 0.3元=0.30元
比较0.100米、0.10米和0.1米的大小。
因为100毫米=10厘米=1分米
所以0.100米=0.10米=0.1米
0.100=0.10=0.1
小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。
例6 2.80元=2.8元 4.00元=4元 10.50元=10.5元
教学内容
人教课标版小学四年级下册第38、39页的内容:小数的性质
学情分析
小数的性质是任教版义务教育教科书四年级下册第38、39页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。
教学目标
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
教学重难点
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
教法与学法
1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
3、培养学生共同合作,相互交流的学习方法。
教学准备
多媒体课件
教学过程
一、复习旧知,导入新课
1、师:同学们,上节课我们学习了什么?(小数的意义)那么在学习新知识之前,让我们一起来复习一下上节课的内容吧!
2、《西游记》同学们都看过没有,那么你们知道《西游记》中都有那些人物(学生自由回答)。
课件展示:有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了标有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位师弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话微笑着点了点头。
师:你知道唐僧听了悟空的话为什么会微笑着点了点头?学了今天的知识你就知道为什么了。
板书课题:小数的性质
设计意图:联系生活实际,达到知识的迁移。
二、提出问题、探索新知
1.出示例1:
⑴师:同学们,这把尺子多长呢?(10厘米)你们还能不能用不同的长度单位来表达出它的长度呢?老师点名提问个别学生来回答。
学:1分米、100毫米。
⑵师;请同学们运用所学有关“小数的意义”的知识,把它们改写成用“米”作单位的小数。
学生独立完成,教师巡视指导个别不会的学生。
⑶教师指名个别学生回答,并对个别表现好的学生给予表扬。
生1:0.1米是1/10米,就是1分米
生2:0.10米是10/100米,就是10厘米
生3:0.100米就是100/1000米,就是100毫米
师:现在老师有个问题请大家帮忙解决一下,0.1米、0.10米和0.100米的大小如何呢?
学生回答,教师总结。
板书:1分米=10厘米=100毫米
0. l米=0.10米=0.100米
设计意图:学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。
⑷观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。
教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.小数中间的0不能去掉.
师质疑:那整数有这个性质吗?
学生分小组讨论,并举例证明得出结论。
(师强调出小数与整数的区别)
设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。
2、教学例2
(1)多媒体出示38页例2:比较0.30与0.3的大小
师:任写一个数,在它的末尾添上一个‘0’或者两个‘0’,用自己的方法验证他们的关系是否相等。
(2)师:刚才同学们用自己的方法证明了我们的发现,想不想知道老师是如何验证的.?
①老师将两个同样大小的正方形*均分成了10份和100份,把其中的30份写成小数就是0,30,另一个正方形取其中的3份就是0.3,将两个正方形移动,重合比较,会是什么结果?
②请大家闭上眼睛想象一下,再睁开眼睛观察屏幕,和你想象的一样吗?可以写一个怎样的等式?
汇报结论:0.3=0.30
(3)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(*均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。
三、课堂检测
1、运用小数的性质时应注意什么?
0.70(去掉末尾的0,大小会变化吗),2.07(去掉中间的0会怎样),0,7(末尾加个0会怎样)?
提示:根据小数的性质,只有小数末尾的“0”去掉之后,才不会改变数的大小。小数中间的“0”和整数部分的“0”不能去掉,因为那样小数其他数位上的数就发生了变化。
2、判断
(1)小数的末尾添上“0”或去掉“0”,小数的大小不变,意义也不变。 ( )
(2) 0.508去掉小数部分的0,这个小数的大小不发生变化。 ( )
(3)因为2和2.0相等,所以它们都是整数。 ( )
(4) 0.8与0.80大小一样,计数单位也一样。 ( )
3、下面哪些小数中的“0”去掉后,小数的大小没有发生变化?
7.03、4.90、8.10、0.02、3.70
4、按要求说出一个数。
①所有“0”都不能去掉。
②所有“0”都能去掉。
③既有能去掉的“0”,又有不能去掉的“0”。
5、谁能只动两笔就可以在5、50、 500之间画上等号?
5=50=500
四、本课小结
通过这节课的学习,你有哪些收获?
五、作业布置
课本41页练习十:1、2、3
板书设计
小数的性质
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
小数的末尾添上或去掉“0”,小数的大小不变。
教学内容:
苏教版五年级上册,第37--38页,例4、例5、例6。
教学目标:
1.在现实情境中通过观察、猜想、验证、比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质解决实际问题。
2.经历从现象中发现问题、提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。
3.在经历变与不变的过程中挖掘数学内涵,感悟数学思想,发展学生的数学思维。
教学重点:
理解小数的性质,并能应用性质解决实际问题。
教学难点:
感悟小数性质中不变与变化的数学辩证思想,发展学生思维。
教学流程:
一、情景导入。
创设数学王国中数字“0”去做客的情景,发现数字“0”引起整数的变化。
二、自主探究。
1.以数字“0”前往小数家中做客的情景,引出问题:0.4是不是等于0.40.
2.在独立验证的基础上,小组讨论交流,为什么0.4=0.40?
3.借助:0.4=0.40=0.400,引导学生逐步概括出小数的性质。
4.深入研究小数的性质:
(1)从小数末尾添上“0”的情况去推断与思考去掉“0”的情况。
(2)在小数的末尾添上“0”或去掉“0”,小数的大小不变,但是小数的哪些方面发生了变化?让学生先讨论,在交流举例。
(3)质疑:为什么在整数的末尾每添上一个“0”,整数就要扩大10倍,而在小数的末尾添上若干个“0”,小数的大小不变?
5.添上两笔,让4、40、400三个数相等。
6.探讨:从0.4到0.04,小数的大小有没有发生变化?从而让学生更深刻的理解“小数的末尾”这一关键词眼。
三、练习应用。
1.出示超市里某些食品的价格表,上面哪些小数里的“0”可以去掉?为什么?
总结:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
质疑:为什么有些小数能化简,但是价格表中仍然写成两位小数?
2.把下面物品的价格写成用“元”作单位的两位小数。
总结:利用小数的性质,可以把小数或者整数改写成指定位数的小数。
3.初步感知小数改写的作用。
四、课堂总结。
通过这节课的学习,你有了哪些新的收获?
教学内容:人教版数学第八册第四单元“小数的性质”
教学目标:
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:
让学生理解并掌握小数的性质。
教学难点:
能应用小数的性质解决实际问题
教学过程:
一、谈话导入、课前质疑
1、师:今天老师给同学们准备了一个小魔术,我们来看看。
这个数认识吗?几呀?出示数字卡片:1
我能让这个数变大,看仔细哟。(添了一个0)
这个1的末尾添了一个0,这个数发生了什么变化?
老师还能把这个数变小,知道怎么变吗?就要把末尾的0(去掉),看着啊。
看来,我把整数末尾的0 去掉,这个数就缩小。那100去掉末尾两个0,大小怎么变化的?(缩小了100倍,好极了)
师:刚才我将这个整数的"末尾添上0,这个整数就变大了,我又将这个整数的末尾去掉0,这个整数就变小了。
2、师:接下来再变一个小数的魔术。这是几?(0.1)看着啊,老师还能把它变大。变大了吗?
这可奇怪了,刚才整数的末尾添上0,这个数会变大,整数的末尾去掉0,这个数就会变小,那我在小数的末尾添上0或去掉0,小数的大小变不变呢?你认为呢?
在小数的末尾添上或去掉0,小数的大小不变,这只是大家的猜想,这个猜想对不对呢?这就需要大家一起来验证一下。
板书:猜想 验证
二、探究新知、课中释疑
1.探究0.1米,0.10米,0.100米的大小
(1)有以有的知识来解释一下这三个数的大小。
请比较一下它们的大小。
板书:1分米=10厘米=100毫米
(2)导入例1:
你能把它们都写成用米做单位的小数的形式吗?必须体现它们的原先单位。
导:分米和米有什么关系?厘米、毫米呢?
根据学生回答归纳演示:
1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
学生很快回答后课件演示。并在他们之间加上等号。
我们还可以用重合法比较一下。(课件演示)
(3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米
提问:这说明了什么问题?
请大家仔细观察这个等式,可以从左往右看,再从右往左看,什么变了?什么没变?在什么地方多(少)0?在这个小数的什么位置?多(少)0还可以怎么说?
小数的末尾添上0大小不变,去掉0大小也不变。是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。
2.教学例2。
(1)比较1.30和1.30的大小。
导:想想0.30表示什么意思?0.3呢?应该涂多少格?
学生涂完色问:你为什么这样涂?之后演示涂色过程。
(2)同桌商量比较,汇报结论。
问:谁涂的面积大?1.30和.1.3的大小怎样?你是怎么知道的?
直观比较法:看上去都一样大;
理论推导法:1.30是130个1/100,也是13个1/10;1.3是13个1/10。
课件演示重合图形。(在原板书下再板书:1.30=1.3)
(3)观察思考
观察板书1.30=1.3
这个例子说明了什么?看来不仅仅是个特例,再次验证我们的猜测。
3. 讨论归纳
教师指着板书说:你能把上面的研究结论归纳成为一句话吗?4人小组之间讨论一下,想想该怎么说才比较完整?
教师提问几个小组代表让其归纳,不够完整可以由其他小组代表补充。得出小数的性质:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质.(课件展示)
4、指导阅读。
讲述:书上也证实了我们的研究,并把它称为“小数的性质”。齐读小数的性质。
5、质疑问难:(判断)
你们对这句话理解的够不够透彻呢?挑战一下你们。(以下题目陆续出现)
(1)一个数的末尾添上“0”或去掉“0”,这个数的大小不变。
举例说明后返回小数的性质,红字强调“小数”。
(2)小数点的后面添上“0”或去掉“0”,小数的大小不变。
举例说明后返回小数小性质,红字强调“末尾”。
(3)10.50=10.5=10.500 判断后返回小数小性质强调“大小不变”。
三、巩固运用、交流反思
小数的性质有什么作用呢?
强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.
l.出示例3:把0.70和105.0900化简。
思考:哪些“0”可以去掉,哪些“0”不能去掉?
(1)提问:0.70你认为可以怎么化简才能大小不变?
(2)学生自己完成。指名回答,让其说说这样做的根据是什么?
(3)为什么105.0900的5左边的0不能去掉呢?(强调小数的性质中“小数的末尾的0”。)
(4)练习:下面的数,哪些“0”可以去掉?哪些¨0“不能去掉?
0.40 1.820 2.900 0.080 12.000
回答后小数末尾的0红色闪现。
问12应该去掉0后是多少?还可以怎样表示?
强调:12去掉0后,小数部分没有数,可以把小数点也去掉。
过渡:同样,应用小数的性质,我们还可以根据需要,把一个数改写成含有指定小数位数的小数
2.出示例4:。
不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。
想想可以怎么做?
(1)学生自己完成。
(2)大家这样做的根据是什么?3能不能直接在后面添0?
(3)练习:下列数如果末尾添”0“,哪些数的大小不变,哪些数的大小有变化?
3.4 18 0.06 700 3.0 4.90
整数和小数用不同的颜色区分。
如果整数想改成大小不变的小数,必须先做什么?(先添上小数点,再添0)
五、课堂小结
1.这节课你学到了哪些知识?有哪些收获?
——四年级数学下册第四单元《小数的性质》教案3篇
教学内容
人教课标版小学四年级下册第38、39页的内容:小数的性质
学情分析
小数的性质是任教版义务教育教科书四年级下册第38、39页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。
教学目标
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
教学重难点
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
教法与学法
1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
3、培养学生共同合作,相互交流的学习方法。
教学准备
多媒体课件
教学过程
一、复习旧知,导入新课
1、师:同学们,上节课我们学习了什么?(小数的意义)那么在学习新知识之前,让我们一起来复习一下上节课的内容吧!
2、《西游记》同学们都看过没有,那么你们知道《西游记》中都有那些人物(学生自由回答)。
课件展示:有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了标有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位师弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话微笑着点了点头。
师:你知道唐僧听了悟空的话为什么会微笑着点了点头?学了今天的知识你就知道为什么了。
板书课题:小数的性质
设计意图:联系生活实际,达到知识的迁移。
二、提出问题、探索新知
1.出示例1:
⑴师:同学们,这把尺子多长呢?(10厘米)你们还能不能用不同的长度单位来表达出它的长度呢?老师点名提问个别学生来回答。
学:1分米、100毫米。
⑵师;请同学们运用所学有关“小数的意义”的知识,把它们改写成用“米”作单位的小数。
学生独立完成,教师巡视指导个别不会的学生。
⑶教师指名个别学生回答,并对个别表现好的学生给予表扬。
生1:0.1米是1/10米,就是1分米
生2:0.10米是10/100米,就是10厘米
生3:0.100米就是100/1000米,就是100毫米
师:现在老师有个问题请大家帮忙解决一下,0.1米、0.10米和0.100米的大小如何呢?
学生回答,教师总结。
板书:1分米=10厘米=100毫米
0. l米=0.10米=0.100米
设计意图:学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。
⑷观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。
教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.小数中间的0不能去掉.
师质疑:那整数有这个性质吗?
学生分小组讨论,并举例证明得出结论。
(师强调出小数与整数的区别)
设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。
2、教学例2
(1)多媒体出示38页例2:比较0.30与0.3的大小
师:任写一个数,在它的末尾添上一个‘0’或者两个‘0’,用自己的方法验证他们的关系是否相等。
(2)师:刚才同学们用自己的方法证明了我们的发现,想不想知道老师是如何验证的?
①老师将两个同样大小的正方形*均分成了10份和100份,把其中的30份写成小数就是0,30,另一个正方形取其中的3份就是0.3,将两个正方形移动,重合比较,会是什么结果?
②请大家闭上眼睛想象一下,再睁开眼睛观察屏幕,和你想象的一样吗?可以写一个怎样的等式?
汇报结论:0.3=0.30
(3)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(*均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。
三、课堂检测
1、运用小数的性质时应注意什么?
0.70(去掉末尾的0,大小会变化吗),2.07(去掉中间的0会怎样),0,7(末尾加个0会怎样)?
提示:根据小数的性质,只有小数末尾的“0”去掉之后,才不会改变数的大小。小数中间的“0”和整数部分的“0”不能去掉,因为那样小数其他数位上的数就发生了变化。
2、判断
(1)小数的末尾添上“0”或去掉“0”,小数的大小不变,意义也不变。 ( )
(2) 0.508去掉小数部分的.0,这个小数的大小不发生变化。 ( )
(3)因为2和2.0相等,所以它们都是整数。 ( )
(4) 0.8与0.80大小一样,计数单位也一样。 ( )
3、下面哪些小数中的“0”去掉后,小数的大小没有发生变化?
7.03、4.90、8.10、0.02、3.70
4、按要求说出一个数。
①所有“0”都不能去掉。
②所有“0”都能去掉。
③既有能去掉的“0”,又有不能去掉的“0”。
5、谁能只动两笔就可以在5、50、 500之间画上等号?
5=50=500
四、本课小结
通过这节课的学习,你有哪些收获?
五、作业布置
课本41页练习十:1、2、3
板书设计
小数的性质
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
小数的末尾添上或去掉“0”,小数的大小不变。
【教学内容】
人教课标版小学四年级下册第58、59页的内容:小数的性质
【学情分析】
小数的性质是义务教育课程标准实验教科书四年级下册第58、59页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。
【教学目标】
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
【教学重难点】
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
【教法与学法】
1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的.能力。
2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
3、培养学生共同合作,相互交流的学习方法。
【教学准备】
教师:自作课件
学生:收集的标签彩笔直尺和纸条
【教学过程】
一、创设情境,导入新课
1、师:课前老师让同学们回忆生活,观察商品的标价签,并记录1—2种商品的价格,请谁来汇报一下?
生:2、00元,师:是多少钱呢?生:2元。
生:3、50元。师:是多少钱?生:3元5角
师:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店三色标价是2、5元,右边一家则是2、50元,那你们去买的时候会选择哪一家呢?为什么?
师:为什么2、5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。
板书课题:小数的性质
设计意图:联系生活实际,达到知识的迁移。
二、提出问题、探索新知
1、出示例1:下面请同学们利用直尺和桌面上的三张纸条分别量出0、1米,0、10米和0、100米长的纸条,各打上记号。各小组合作共同完成。
老师巡视并引导学生观察米尺图
2、各小组汇报:结合学生回答,教师板书:
0、1米是1/10米,就是1分米
0、10米是10/100米,就是10厘米
0、100米就是100/1000米,就是100毫米
因为1分米=10厘米=100毫米
所以0、l米=0、10米=0、100米
教师小结:这三个数量虽然各不相同,但表示大小相等、
设计意图:学生根据小数的意义,从“0、l米、0、10米、0、100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。
3、观察比较:教师指着“0、l米=0、10米=0、100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。
教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简、小数中间的0不能去掉、
师质疑:那整数有这个性质吗?
学生分小组讨论,并举例证明得出结论。
(师强调出小数与整数的区别)
设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。
4、练一练:
(1)多媒体出示58页做一做:比较0、30与0、3的大小
师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)
(2)师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作)
(3)在两个大小一样的正方形里涂色比较。
汇报结论:0、3=0、30
师质疑:小数由0、3到0、30,你看出什么变了?什么没变?你从中发现了什么?(*均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0、3=0、30。)
设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。
5、小数性质应用、【继续演示课件“小数的性质”】
(1)教学例3:把0、70和105、0900化简、
思考:哪些“0”可以去掉,哪些“0”不能去掉?
105、0900中“9”前面的“0”为什么不能去掉?
(0、70=0、7;105、0900=105、09)
教师强调:末尾和后面不同。
(2)教学例4:不改变数的大小,把0、2、4、08、3改写成小数部分是三位的小数、学生独立完成,全班共同订正。
(0、2=0、200;4、08=4、080;3=3、000)
思考:“3”的后面不加小数点行吗?为什么?
(3)你在哪些地方看到过小数末尾添0的数?(商场的标价上)
三、巩固深化,拓展思维
1、完成59页的做一做。
重点指导学生说一说为什么有些“0”不能去掉和
说一说为什么有些数的末尾添上“0”,原数就发生了变化、
2、挑战自我。
(1)谁能只动三笔,让下面三个数之间划上等号?
6020 = 602 =60200
(2)每人写几个和3、200相等的数、
设计意图:挑战自我的习题留给学生课后去完成,让学生的学习活动从课堂延伸到课后。
四、全课小结
1、这节课你有哪些收获?
2、你对自己或同学有什么评价?
五、布置作业、
完成练习十1—3题。
板书设计:
小数的性质
例1 1分米= 10厘米= 100毫米
从右往左从左往右
0、1米= 0、10米= 0、100米
小数的末尾添上0或者去掉0,小数的大小不变。
0、3= 0、30 =0、300
例2化简小数。
0、70= 0、7 105、0900=105、09
例3不改变数的大小,把下面各数写成三位小数。
0、2=0、200 4、08=4、080 3=3、000
教学内容
人教课标版小学四年级下册第38、39页的内容:小数的性质
学情分析
小数的性质是任教版义务教育教科书四年级下册第38、39页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。
教学目标
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
教学重难点
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
教法与学法
1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
3、培养学生共同合作,相互交流的学习方法。
教学准备
多媒体课件
教学过程
一、复习旧知,导入新课
1、师:同学们,上节课我们学习了什么?(小数的意义)那么在学习新知识之前,让我们一起来复习一下上节课的内容吧!
2、《西游记》同学们都看过没有,那么你们知道《西游记》中都有那些人物(学生自由回答)。
课件展示:有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了标有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的`应该让给大师兄悟空吃。”悟空笑了笑说:“两位师弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话微笑着点了点头。
师:你知道唐僧听了悟空的话为什么会微笑着点了点头?学了今天的知识你就知道为什么了。
板书课题:小数的性质
设计意图:联系生活实际,达到知识的迁移。
二、提出问题、探索新知
1.出示例1:
⑴师:同学们,这把尺子多长呢?(10厘米)你们还能不能用不同的长度单位来表达出它的长度呢?老师点名提问个别学生来回答。
学:1分米、100毫米。
⑵师;请同学们运用所学有关“小数的意义”的知识,把它们改写成用“米”作单位的小数。
学生独立完成,教师巡视指导个别不会的学生。
⑶教师指名个别学生回答,并对个别表现好的学生给予表扬。
生1:0.1米是1/10米,就是1分米
生2:0.10米是10/100米,就是10厘米
生3:0.100米就是100/1000米,就是100毫米
师:现在老师有个问题请大家帮忙解决一下,0.1米、0.10米和0.100米的大小如何呢?
学生回答,教师总结。
板书:1分米=10厘米=100毫米
0. l米=0.10米=0.100米
设计意图:学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。
⑷观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。
教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.小数中间的0不能去掉.
师质疑:那整数有这个性质吗?
学生分小组讨论,并举例证明得出结论。
(师强调出小数与整数的区别)
设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。
2、教学例2
(1)多媒体出示38页例2:比较0.30与0.3的大小
师:任写一个数,在它的末尾添上一个‘0’或者两个‘0’,用自己的方法验证他们的关系是否相等。
(2)师:刚才同学们用自己的方法证明了我们的发现,想不想知道老师是如何验证的?
①老师将两个同样大小的正方形*均分成了10份和100份,把其中的30份写成小数就是0,30,另一个正方形取其中的3份就是0.3,将两个正方形移动,重合比较,会是什么结果?
②请大家闭上眼睛想象一下,再睁开眼睛观察屏幕,和你想象的一样吗?可以写一个怎样的等式?
汇报结论:0.3=0.30
(3)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(*均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。
三、课堂检测
1、运用小数的性质时应注意什么?
0.70(去掉末尾的0,大小会变化吗),2.07(去掉中间的0会怎样),0,7(末尾加个0会怎样)?
提示:根据小数的性质,只有小数末尾的“0”去掉之后,才不会改变数的大小。小数中间的“0”和整数部分的“0”不能去掉,因为那样小数其他数位上的数就发生了变化。
2、判断
(1)小数的末尾添上“0”或去掉“0”,小数的大小不变,意义也不变。 ( )
(2) 0.508去掉小数部分的0,这个小数的大小不发生变化。 ( )
(3)因为2和2.0相等,所以它们都是整数。 ( )
(4) 0.8与0.80大小一样,计数单位也一样。 ( )
3、下面哪些小数中的“0”去掉后,小数的大小没有发生变化?
7.03、4.90、8.10、0.02、3.70
4、按要求说出一个数。
①所有“0”都不能去掉。
②所有“0”都能去掉。
③既有能去掉的“0”,又有不能去掉的“0”。
5、谁能只动两笔就可以在5、50、 500之间画上等号?
5=50=500
四、本课小结
通过这节课的学习,你有哪些收获?
五、作业布置
课本41页练习十:1、2、3
板书设计
小数的性质
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
小数的末尾添上或去掉“0”,小数的大小不变。
——四年级数学下册第四单元小数的性质教案3篇
教学内容:人教版数学第八册第四单元“小数的性质”
教学目标:
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:
让学生理解并掌握小数的性质。
教学难点:
能应用小数的性质解决实际问题
教学过程:
一、谈话导入、课前质疑
1、师:今天老师给同学们准备了一个小魔术,我们来看看。
这个数认识吗?几呀?出示数字卡片:1
我能让这个数变大,看仔细哟。(添了一个0)
这个1的末尾添了一个0,这个数发生了什么变化?
老师还能把这个数变小,知道怎么变吗?就要把末尾的0(去掉),看着啊。
看来,我把整数末尾的0 去掉,这个数就缩小。那100去掉末尾两个0,大小怎么变化的?(缩小了100倍,好极了)
师:刚才我将这个整数的末尾添上0,这个整数就变大了,我又将这个整数的末尾去掉0,这个整数就变小了。
2、师:接下来再变一个小数的魔术。这是几?(0.1)看着啊,老师还能把它变大。变大了吗?
这可奇怪了,刚才整数的末尾添上0,这个数会变大,整数的末尾去掉0,这个数就会变小,那我在小数的末尾添上0或去掉0,小数的大小变不变呢?你认为呢?
在小数的末尾添上或去掉0,小数的大小不变,这只是大家的猜想,这个猜想对不对呢?这就需要大家一起来验证一下。
板书:猜想 验证
二、探究新知、课中释疑
1.探究0.1米,0.10米,0.100米的大小
(1)有以有的知识来解释一下这三个数的大小。
请比较一下它们的大小。
板书:1分米=10厘米=100毫米
(2)导入例1:
你能把它们都写成用米做单位的小数的形式吗?必须体现它们的原先单位。
导:分米和米有什么关系?厘米、毫米呢?
根据学生回答归纳演示:
1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
学生很快回答后课件演示。并在他们之间加上等号。
我们还可以用重合法比较一下。(课件演示)
(3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米
提问:这说明了什么问题?
请大家仔细观察这个等式,可以从左往右看,再从右往左看,什么变了?什么没变?在什么地方多(少)0?在这个小数的什么位置?多(少)0还可以怎么说?
小数的末尾添上0大小不变,去掉0大小也不变。是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。
2.教学例2。
(1)比较1.30和1.30的大小。
导:想想0.30表示什么意思?0.3呢?应该涂多少格?
学生涂完色问:你为什么这样涂?之后演示涂色过程。
(2)同桌商量比较,汇报结论。
问:谁涂的面积大?1.30和.1.3的大小怎样?你是怎么知道的?
直观比较法:看上去都一样大;
理论推导法:1.30是130个1/100,也是13个1/10;1.3是13个1/10。
课件演示重合图形。(在原板书下再板书:1.30=1.3)
(3)观察思考
观察板书1.30=1.3
这个例子说明了什么?看来不仅仅是个特例,再次验证我们的猜测。
3. 讨论归纳
教师指着板书说:你能把上面的研究结论归纳成为一句话吗?4人小组之间讨论一下,想想该怎么说才比较完整?
教师提问几个小组代表让其归纳,不够完整可以由其他小组代表补充。得出小数的性质:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的.性质.(课件展示)
4、指导阅读。
讲述:书上也证实了我们的研究,并把它称为“小数的性质”。齐读小数的性质。
5、质疑问难:(判断)
你们对这句话理解的够不够透彻呢?挑战一下你们。(以下题目陆续出现)
(1)一个数的末尾添上“0”或去掉“0”,这个数的大小不变。
举例说明后返回小数的性质,红字强调“小数”。
(2)小数点的后面添上“0”或去掉“0”,小数的大小不变。
举例说明后返回小数小性质,红字强调“末尾”。
(3)10.50=10.5=10.500 判断后返回小数小性质强调“大小不变”。
三、巩固运用、交流反思
小数的性质有什么作用呢?
强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.
l.出示例3:把0.70和105.0900化简。
思考:哪些“0”可以去掉,哪些“0”不能去掉?
(1)提问:0.70你认为可以怎么化简才能大小不变?
(2)学生自己完成。指名回答,让其说说这样做的根据是什么?
(3)为什么105.0900的5左边的0不能去掉呢?(强调小数的性质中“小数的末尾的0”。)
(4)练习:下面的数,哪些“0”可以去掉?哪些¨0“不能去掉?
0.40 1.820 2.900 0.080 12.000
回答后小数末尾的0红色闪现。
问12应该去掉0后是多少?还可以怎样表示?
强调:12去掉0后,小数部分没有数,可以把小数点也去掉。
过渡:同样,应用小数的性质,我们还可以根据需要,把一个数改写成含有指定小数位数的小数
2.出示例4:。
不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。
想想可以怎么做?
(1)学生自己完成。
(2)大家这样做的根据是什么?3能不能直接在后面添0?
(3)练习:下列数如果末尾添”0“,哪些数的大小不变,哪些数的大小有变化?
3.4 18 0.06 700 3.0 4.90
整数和小数用不同的颜色区分。
如果整数想改成大小不变的小数,必须先做什么?(先添上小数点,再添0)
五、课堂小结
1.这节课你学到了哪些知识?有哪些收获?
——小学四年级数学小数加减法教案5篇
教学内容:教科书第111—112页的例1和例2,第111页、113页上面“做一做”中的 题目和练习二十六的第1—2题。
教学目的:
1、使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。
2、培养学生的迁移类推的能力。
教学过程:
一、复习
1、少先队采集中草药。第一小队采集了1250克,第二小队采集了986克。两个小队一共采集了多少克?让学生先解答,再说一说整数加法的意义和计算法则。
2、笔算。
4、67十2、5= 6、03十8、47= 8、41—0、75=
让学生列竖式计算,指名说一说自己是怎样算的,并注意检查学生竖式的书写格式是否正确。
二、新课
1、教学例l。
(1)通过旧知识引出新课。
教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例l。让学生读题, 理解题意。
(2)引导学生比较整数加法和小数加法的意义。
教师:“例1与复习中的第1题有什么相同的地方?例1应该用什么方法计算?为什 么要用加法算?”
引导学生通过比较说出:从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算;从例1可以看出小数加法的意义和整数加法的意义相同、也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的千克数合起来,所以要用加法计算。
(3)引导学生理解小数点对齐的道理。
教师板书横式以后,让学生说一说怎样写竖式,并提问:“为什么要把小数点对齐?”然 后把以千克作单位的小数改写成以克作单位的整数,列出竖式,并提问:“整数加法应该怎样算?”引导学生说出计算时要把相同数位上的数对齐,再从个位加起。
教师接着再提问:“为什么要把相同数位上的数对齐?”引导学生说出相同计数单位上 的数才能相加。教师告诉学生:小数加法也是相同计数单位上的数才能相加,所以列竖式 时只要把小数点对齐就能使相同数位上的数对齐。
然后让学生计算,算完后教师提问:“得数7、810末尾的‘0’怎样处理?能不能去掉?为什么能去掉?”引导学生说出根据小数的性质可以把末尾的“0”去掉。并告诉学生以后在计 算小数加法遇到小数末尾有“0”时,通常要把“0”去掉。
2、让学生做第111页“做一做”中的题目。
让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。
3、引导学生比较小数加法和整数加法的计算法则。
教师:“小数加法与整数加法在计算上有什么相同的地方?”启发学生说出小数加法和 整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐:
4、教学例2。
(1)引导学生通过比较得出小数减法的意义。
教师:“例2的条件和问题与例l比有什么变化?例2的数量关系是什么?”启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数、求第二小队采集 的"千克数;可以看出小数减法也是已知两个加数的和与其中的一个加数。求另一个加数的运算,所以它的意义与整数减法的意义是相同的。
(2)利用知识迁移使学生理解小数点对齐的算理。
让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐: 然后教师把千克数改写成克数并列出竖式,提问:“个位上是几减几?”接着让学生看小数减法竖式,提问:“被减数干分位上没有数计算时怎么办?”利用小数的性质使学生理解被减数干分位上没有数可以添“0”再减,也可以不写“0”,把这一位看作“0”再计算,以后 在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是 否对齐,被减数千分位的处理是否正确,得数的小数点点得是否正确。
5、比较小数减法与整数减法的计算法则。
让学生讨论小数减法与整数减法在计算上有什么相同的地方。使学生明确这和小数 加法与整数加法在计算上的关系是一样的。
6、小结。
教师:“通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?”
启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法 则,齐读一遍。
7、做第113页最上面“做一做”中的题目。
学生做题之前,教师先提问:“整数加减法各部分间的关系是怎样的?整数加减法是怎样验算的?”从而说明小数加减法各部分间的关系及验算方法与整数加减法的一样。再让学生做题、检查竖式的书写及计算有没有错误,得数的小数点点得是否正确,验算的格式 对不对。订正时,让学生说一说是怎样计算并验算的。
三、巩固练习
做练习二十六的第1—2题。
1、做第l题,教师先说明题意,要根据加法算式来写减法算式的得数,不用再列式计算。学生做完之后,可以提问:“你是根据什么来写减得的差的?”使学生加深对小数减法的 意义和加减法关系的认识;
2、做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时, 针对学生易出错的地方重点说一说。
设计说明
小数加减法的教学是在学生已经学习了整数加减法的基础上进行的,本课时学习的内容属于小数加减法的第2课时,学生已经掌握了小数点对齐的道理,旨在通过本节课的学习明确在小数加减法中不能遵循末位对齐的道理。因此,本节课的教学设计突出以下特点:
1、以旧引新,唤醒认知。
通过复习整数加减法的计算方法及小数点为什么要对齐的道理,唤醒学生的已有认知,在此基础上同化新知。
2、合作学习,探究新知。
根据例题的编写意图,在教学例2时,结合具体情境,巧妙运用知识迁移,引导学生在比较、分析中发现小数加减法和整数加减法的相同之处和不同之处,留给学生足够的探索空间,引导学生先尝试计算,再交流讨论,最后总结方法,培养学生的抽象概括能力。
课前准备
教师准备 多媒体课件 课堂活动卡
学生准备 收集的生活中的小数
教学过程
⊙以旧引新,唤醒认知
回忆整数加减法的计算方法。
师:上节课我们初步了解了小数加减法,在计算小数加减法时要注意什么?(小数点要对齐)
师:这节课我们继续学习小数加减法。(板书课题)
设计意图:通过创设问题情境,唤醒学生已有的知识经验,为探究新知做好铺垫。
⊙探究新知
1、合作探究。
(1)课件出示例2中的两个问题,学生读题后,列出算式。
①*5+8.3= ②8.3-*5=
(2)引导学生根据课堂活动卡,先独立完成,再组内交流。(见课堂活动卡)
(3)学生汇报。
小组1:我们小组通过交流,发现在计算小数加减法的时候,不能像整数加减法那样只要末位对齐就说明数位对齐了,而是小数点一定要对齐。
小组2:我们小组也同意他们的说法,比如列竖式计算*5+8.3的时候,如果只考虑末位对齐,那就出现8.3的十分位和*5的百分位对齐了,这就错了,所以在计算小数加减法的时候一定要把小数点对齐,才能保证相同数位对齐。
小组3:我们小组在计算第二道题的时候发现,当被减数百分位上没有数,而减数百分位上有数的时候,要先在被减数的百分位上添0占位再进行计算,根据小数的基本性质可知这样并不影响小数的大小。
2、总结方法。
小数加减法在计算的时候要注意什么呢?
(1)小数点要对齐,也就是要把相同数位对齐。
(2)得数的小数部分末尾有0,可以省略不写。
设计意图:先根据问题直接列式,然后引导学生借助已有的知识经验进行计算,在交流讨论中得出小数加减法的计算方法。在这一过程中充分发挥了学生的主体作用,在知识加工的过程中逐步接纳了新知识,改变了原有的认知结构。
教学内容:
人教版四年级下册71-72页
教学目标:
1、基本知识:在自主计算的过程中,通过体验,感悟,能归纳总结小数加、减法笔算的一般方法。
2、基本技能:能用竖式计算小数加、减法,理解算理。
3、基本思想:在学生已有知识的基础上,自主尝试计算小数加、减法,并和整数加减法进行比较,渗透迁移类推思想和比较归纳的数学思想。
4、基本活动经验:在竖式计算的过程中积累思考的经验和探究的经验。能正确计算小数加减法,提高计算的正确率。渗透应用意识。
5、四能目标:引导学生读懂情境,从问题入手,经历计算过程,理解算理,并尝试着解决生活中的实际问题,培养学生分析问题及解决问题能力。
6、情感与态度:在学习活动中体会数学与生活的联系,激发学生的求知欲望,培养认真、刻苦的学习习惯。
教学重点:
小数加减法笔算方法。
教学难点:
小数点对齐,也就是相同数位对齐的道理。
教具准备:
幻灯片
教学过程:
一、课前放松,活跃气氛。
师:同学们,上课之前,咱们先放松放松,老师给大家准备了一段小视频,我们一起来看看,好不好?
(播放游乐场过山车游玩视频)
师:视频里这是玩的什么游乐项目啊?大家看完这段小视频有什么感受啊?
生:过山车。我觉得很刺激,害怕,激动、、、、、、(找2-3人)
师:老师也觉得非常具有挑战性,而且老师也比较喜欢玩这个项目。大家都去过游乐园吗?你们去游乐园都喜欢玩什么游乐项目啊?
生:海盗船,激流勇进、、、、、、(找3-4人)
师:你能给大家介绍一下这个游乐项目吗?
师:好玩吗?听着就觉得很刺激!
师:哇,通过你的介绍我觉得真的很好玩。
二、创设情境,激发兴趣,揭示任务。
师:通过课前对大家的了解,老师发现大家都特别喜欢去游乐园玩,如果周末我们可以去游乐园玩一天的话,你想玩什么游乐项目啊?
生:碰碰车,旋转木马,旋转秋千,水上滚筒,跳床、、、、、、(找2-3人)
师:听着大家说的就觉得有趣,在出发之前,你想为游玩准备些什么东西呢?
生:巧克力,伞,照相机,帐篷,水,零食等。(找3-4人)
师:大家想的真周到!我想带一些食品是必须的。老师为大家在超市里选出了一些食品,我们一起来看看。
师:出示课件:薯片、火腿肠、面包、水和巧克力(一起出)
师:这么多食品,请大家仔细观察一下,图上有哪些数学信息,看谁发现的信息最全。
生:我发现每袋薯片4.29元,每个面包*5元,一袋火腿肠9.61元,一袋巧克力14.39元,一瓶矿泉水2.58元。。。。。。(找2个学生来说,一定引导孩子说完整话,因为图中的信息多,老师最后在带领学生梳理一遍)
师:真棒!通过观察我们发现了这么多的数学信息,那你能根据其中的两个数学信息提出一个数学问题并且用竖式进行解答?
生:能
师:那同学们根据其中的两个数学信息自己提出一个数学问题,并尝试着在练习本上用竖式进行解答。
(指名两名学生板书解答过程 一个加法问题一个减法问题)
师:解答完后小组交流一下,你提出了什么数学问题,并且说一说你是怎么计算的,开始!(孩子交流时,老师参与其中,心中有数)。
设计意图:两位小数加减法是在学生掌握了简单的一位小数加减法的基础上进行的。培养学生利用迁移思想尝试解决问题,以学生为课堂的主体,放手放学生去尝试。
三、提出问题 自主探究 归纳交流
师:请大家坐好,刚才大家交流的都很认真,我们先来看看黑板上的这道题,你给大家说一说你提出的是什么问题,是怎样解答的?其他同学要认真听,看他的想法对不对。(学生到讲台给大家边说边讲)
生:我提的问题是一袋薯片和一个面包一共多少元?
师:你是怎样列式的?
生:4.29+*5=
师:大家看看这样列式对不对?
师:好,同学们,我们关注一下他的竖式,4.29+*5,你接着说,你为什么这样列竖式?
生:4和6都要写在个位上,4和2写在十分位上,5和9写在百分位上。
师;也就是个位和个位对齐,十分位和十分位对齐,百分位和百分位对齐,也就是什么对齐?
生:相同数位对齐。
师:小数点对齐了,也就做到了相同数位对齐。你说的太棒了,谁能像它这样说一说为什么这样列竖式?
生:找2-3人。
设计意图: 本节课的难点就是理解小数点对齐,也就是相同数位对齐。在第一个孩子表达列竖式方法的时候,老师引导孩子用规范的数学语言表述,同时面向全体学生,强化对这一知识点的理解。
师:请你接着说各个数位上的数怎样相加的?
生:百分位9+5满十向前进一得14,十分位2+4+1得7,个位4+6满十向前进一得10,小数点对齐,最后就是10.74。
4. 29
+ 6 . 45
-------------------------------
10. 7 4
师:说的非常好,谁还提出了加法的问题,到前面跟大家交流一下。
生2:我的问题是一袋薯片和一袋火腿肠一共多少元?列式是4.29+9.61。
师:这样列式对不对?竖式是4.29+9.61,大家听他说一说,为什么这样列竖式?
生:我把相同数位对齐。百分位9+1满十向前进一得10,十分位2+6+1得9,个位4+9满十向前进一得13,小数点对齐,得13.90.横式写13.9
师:你能说说理由吗?为什么写13.9,去掉末尾的0?
生:根据小数的性质末尾的零可以省掉。
师:非常好,根据小数的性质,写横式时末尾的零可以省略不写。
设计意图:对于小数的性质这一所学习过的知识活学活用,使孩子能够注意到问题并能自己解决问题。
师:谁还提出了加法的问题?
生3:我的问题是一瓶水和一袋巧克力一共多少钱?列式是2.58+14.39。
写竖式时相同的数位对齐从低位加起,8+9满十向前进一得17,十分位5+3+1得9,个位2+14满十向前进一得得16,最后得16.97.
师:每一步说的非常清楚,我觉得你提的这道题很有难度啦,每一个数位都要向前进位,你能告诉大家,计算时需要注意些什么吗?
生:要注意小数点对齐,满十向前一位进一。(找2人说一说)
师:通过刚才的交流,我们知道小数加法列竖式时要做到相同的数位对齐,(板书:小数点对齐,也就是相同数为对齐)计算时满十向前一位进一,不要忘了加小数点。
设计意图:引导孩子自主概括总结的能力,同时为计算小数减法做基础。
师:看来两位小数的加法大家会做了,我们再来看看黑板上这道减法题是怎么做的。刚才这位同学,你说说你提的什么问题?(学生到讲台给大家边说边讲)
生1: 我的问题是一袋面包比一袋薯片贵多少元?
列式*5-4.29。
师:大家来看看他的式子写得对不对?
生:对。
师:同学们认真听他说说,为什么这样列竖式。
生:我把相同数位对齐。
师:你能具体的说一说,相同数位怎么对齐吗?
生:也就是个位和个位对齐,十分位和十分位对齐,百分位和百分位对齐。
师:这样对齐也就表示什么对齐?
生:相同数位对齐。
师:好,下面是怎么计算的?
生:从百分位算起,5-9不够减,向前借一得6,十分位4变成3减2得1,个位6减4得2,结果是2.16.
师:你做的非常好,谁还提出了减法的问题?
生2:我的问题是一袋巧克力比一袋火腿肠贵多少元?列式
14.39-9.64。
我把相同数位对齐,百分位9-4得5,十分位3-6不够减,向前借一得7,个位14变成13-9得4,结果是4.75.(学生说完后教师评价)
师:好,谁还提的是减法的问题,也想给大家展示一下。
生7:我的问题是一袋巧克力比一袋面包贵多少钱?列式14.39-*5。
我把相同数位对齐,百分位9-5得4,十分位3-4不够减,向前借一得9,个位14变成13-6得7,结果是7.94.(学生说完后教师评价)
师:解答这道题你有什么要提醒给大家的吗?
生:列竖式时要把小数点对齐也就是相同数位对齐,计算时不够减要向前一位借一。
师:谁再说说,计算小数减法应该注意些什么?(找两人说)
师:的确小数减法和小数加法一样,列竖式时要把相同数位对齐,计算时不够减要向前一位借一。
设计意图:及时小结并强调计算小数减法和小数加法一样,都要做到相同数位对齐,突出重点。
师:(组织学生做好,看黑板,对照板书总结)通过刚才的学习,我们自己提出并解决了这么多小数加减法(教师边说边板书)的问题,要想知道我们这些问题解答的是否正确,可以进行验算,谁来说一说小数加法可以怎样验算?
生1:两个加数交换位置再相加。
生2:也可以用和减其中一个加数验算。
师:那小数减法呢?
生1:减数加差。
生2:被减数减差。
师:说的非常好,请同学们把你刚才解决的问题在选择一种方法演算一遍,看你算得对不对。(找两个学生验算黑板上的两个问题)
(学生做完后看黑板订正黑板上的验算)
设计意图:计算小数加减法不仅考察学生的仔细认真的计算能力,教师还要注意引导学生养成验算的好习惯。
师:看来同学们都算对了,通过这节课的学习,我们知道计算两位小数的加减法时,要把小数点对齐,也就是相同数位对齐。同学们,老师这收集了几位同学的作业,大家看看他们做的对不对。(出示投影)
四、巩固练习 应用拓展
一 出示下面的计算对吗?把不对的改正过来。
7 . 0 3 1 5 . 6 2 2 3 . 4 7 . 8 5
+ 0 . 9 8 - 7 . 4 6 - 1 3 . 4 + 9 . 1 9
————— —————— —————— ——————
7 . 0 1 8 . 2 6 1 0 0 1 7 . 0 4
(逐一看说理由)
师:大家来看看这几道题,自己先思考一下每道题有没有什么问题,再和你的同桌说一说。
师:大家的眼力真好,发现了同学的问题,还帮助他们改正了过来,老师相信大家在计算时肯定不会出现这些错误,我们做几道题试试。
设计意图:调动学生做题积极性,并能发现计算过程中可能会遇到的问题同时也是提醒学生不要犯同样的错误,提高计算正确率。
五、计算下面各题。
2.98+0.5612.53+4.676.07+4.895.64-1.787.2-0.815.62-7.46
师:一共六道题,分成三组。
师:独立列式解答,并展示学生答案,师生共同分析对错,强调需要注意问题。
师:全做对的同学举手,大家真棒。同学们,小数在生活中的应用非常广泛。比方说,去超市买东西,评比体育测试的成绩,比较人的身高体重,都会用到我们今天学习的小数加减法,希望你们能够用这节课的收获去解决更多的生活问题。
师:刚才咱们只做了其中的两道题,剩下四道计算题还有这道图形题是我们书上做一做的题,我们留作课下练习。好,同学们,下课。
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)四年级下册第72页例1及做一做。
在三年级,学生已经学习了一位小数加减法的计算。在此基础上,本课时继续学习小数加减法。例1以本单元主题图的买书情境为线索展开教学,自然引入数位相同的小数加减法的学习,重点解决的是列竖式时小数点应对齐的问题,突出计算的算理理解。为进一步学习数位不同的小数加减法夯实基础。
(二)核心能力
通过自主探索、交流讨论的过程,理解“小数点对齐就是相同数位对齐”这一本质,培养迁移推理能力和运算能力,发展数感。
(三)学习目标
1.借助熟悉的生活情境,通过自主探索、交流讨论理解“小数点对齐”的道理,掌握竖式计算的方法,并能正确计算数位相同的小数加减法,养成良好的计算习惯。
2.通过计算、比较等活动经历把整数加减法计算经验迁移到小数加减法计算的过程,培养学生运用迁移规律的意识。
3.通过解决实际问题,感受到小数加减法在生活中的广泛应用,提高应用意识,增强学习数学的信心。
(四)学习重点
掌握竖式计算的方法,并能正确计算。
(五)学习难点
理解“小数点对齐就是相同数位对齐”这一本质。
(六)配套资源
实施资源:《小数加减法(例1)》名师教学课件
二、教学设计
(一)课前设计
1.预习任务
想一想:一位小数加减法的计算方法是什么?请你任意写出几个一位数加减法的算式,并进行计算。
(二)课堂设计
1.复习导入
(1)口算,并说出口算的方法。
2.5+0.9=1.2-0.5=
7.8+1.6=4.7-2.8=
11.7+2=8.6-5.3=
1.2+0.8=7.5-2.5=
(2)列竖式计算
3685+279=3685-279=
师:你能说一说计算整数加减法时要注意什么吗?
预设:
生1:相同数位对齐,从个位加起,哪一位上的数相加满十,就向前一位进一。
生2:相同数位对齐,从个位减起,哪一位上的数不够减,就从它的前一位退一当十,和本位上的数合并在一起,再减。
师:同学们已经把整数加减法的计算方法熟记在心了,如果换成小数的加减法,你们还有办法解决吗?今天这节课我们就继续学习小数加、减法的计算。(板书课题)
【设计意图:三年级下册已经学习了一位小数的加减法,通过一位小数的口算复习,对本节课新知进行铺垫。通过对整数加法的练习,用旧知引新知,为他们的学习指明方向,激发起学生探究知识的欲望。】
2.学习例1。(数位相同的小数加减法)
小数加法
出示购书情境:
(1)师:两位同学到书店买书,小丽买了这两本书。你能根据图中的信息提出数学问题吗?
预设:
生1:小丽买了一本《数学家的故事》*5元,一本《童话选》4.29元。求一共花了多少元?
生2:小丽买了一本《数学家的故事》*5元,一本《童话选》4.29元。《数学家的故事》比《童话选》贵多少元?
(2)师:我们先来解决第一个问题。你能先估一估买这两本书小丽要花多少元吗?
预设:
生:
因为两本书的价钱都往小估了,所以小丽买书的钱会比10元多。
【设计意图:估算是重要的运算技能,通过估算可以帮助推算出结果的大致范围,进而在精确计算中有效避免出现不合理的错误答案。借估算定精算,实现了估算与精算之间的沟通,培养了学生的计算能力。】
(3)师:“小丽一共花了多少钱?”你们能解决这个问题吗?请把你的方法记录下来。学生独立尝试,再小组交流。教师巡视,指名板演,呈现不同的算法。
预设:
生1:
生2:
生3:
【设计意图:借助学生已有的整数加减法的计算经验,以及在具体情境下对小数的理解,给予学生自主探索的空间和时间,鼓励他们用不同的方法计算,大胆尝试探究,让不同层次的学生都能得到不同的发展。】
(4)师:同学们刚才用自己的办法解决了问题,比较这几位同学的方法,它们有什么相同?有什么不同?
预设:
生1:都是用加法解决,结果相同都是10.74元。
生2:前两种方法是把小数加法转化成整数加法进行计算的,第三种方法是直接用小数进行计算的。
(5)师:有的同学借助我们学过的旧知识,将新知识转化成已学知识,从而解决问题。有的同学是直接用小数进行竖式计算的。我们重点学习这种方法。谁能来具体说说小数加法该如何计算呢?
预设:
生:先把小数点对齐,然后按照整数加法的计算方法进行计算。
(6)教师:列竖式时,为什么要把小数点对齐呢?
预设:
生1:在学习一位小数加法时,就是把小数点对齐,即相同数位对齐。也就是整数部分相同数位对齐,小数部分的十分位的数要对齐。所以当两个两位小数相加时,百分位上的数也要对齐。
生2:*5表示6个一,4个十分之一,5个百分之一;4.29表示4个一,2个十分之一,9个百分之一。当小数点对齐时,相同数位就对齐了。先从百分位加起,5加9得到14个百分之一,百分位满十要向十分位进一,在百分位上写4;十分位上4加2加1得到7个十分之一,在十分位上写7;最后个位上6加4得到10个一。因为只有计数单位相同的两个数才能直接相加,所以要把相同数位对齐,即“小数点对齐”。
(7)师:在计算小数加法时,你更喜欢哪种方法?为什么呢?
预设:
生:喜欢第三种方法。因为这种方法简单,并且所有小数加法都可以这样计算。
【设计意图:引导学生通过对不同方法的分析、比较,找到各方法间的内在联系与不同;同时借助笔算小数加法的经历,通过运用数学语言的交流,逐渐理解“小数点对齐就是相同数位对齐”这一本质,体会到小数点对齐的必要性,培养学生的数学思维能力。】
小数减法
出示:《数学家的故事》比《童话选》贵多少元?
(1)教师:关于小数加法,同学都会计算了。这个问题你能解决吗?学生独立解决。
预设:
小数点对齐。从百分位减起,5减9不够减,就从十分位退一当十再减,15-9=6,得到6个百分之一,在百分位上写6;十分位上4退1是3,3-2=1,得到1个十分之一,在十分位上写1;最后个位上6-4=2,得到2个一,在个位上写2。
(2)教师:在计算过程中,你有什么发现?
预设:
生1:和小数加法相同,竖式计算时都要将小数点对齐;
生2:小数减法的计算方法和整数减法的计算方法相同。
(3)教师:在计算过程中,有什么需要我们注意的吗?
预设:
生1:小数点对齐,就是相同数位对齐。即每一位都是在求相同计数单位个数的差。
生2:按照整数减法的计算方法计算,哪一位上的数不够减,就从它的前一位退一当十,和本位上的数合并在一起,再减。
【设计意图:将小数加法的笔算经验和整数减法的计算方法迁移到小数减法中,进一步加深对算理的理解。】
3.比较内化,突出算理
快速口算:5+20.5+0.20.05+0.02+
5-20.5-0.20.05-0.02-
你有什么想法?
生1:小数加减法和整数加减法都是要把相同数位对齐。
生2:小数加减法的计算方法和整数加减法的计算方法相同。
……
无论是整数加减法、小数加减法、还是分数加减法,本质都是相同计数单位个数的加减,计算时,必须要把相同数位对齐。
【设计意图:通过小数减法与小数加法的对比、小数减法与整数减法的对比,帮助学生理清所学知识间的联系与区别,促进学生对算理的理解】
巩固练习。
(1)口算:
练习十七第1题。
(2)计算下面各题,并且验算。
2.98+0.5612.53+4.676.07+4.89
5.64-1.787.2-0.815.62-7.46
强调:在计算结果中,小数末尾的“0”要根据小数的性质划掉。
(3)下面是小明的体重统计图。
(1)小明从7岁到10岁,体重增加了多少千克?
(2)哪一年比上一年增加得最多?增加了多少?
5.课堂小结
同学们,通过本节课的学习,你有什么新的收获?还有什么问题?
小结:本节课我们学习了用竖式计算小数加减法。列竖式时,要把小数点对齐,也就是相同数位对齐,然后再按照整数加减法的计算方法进行计算。
问题:如果小数部分的数位不同,怎么进行计算呢?有兴趣的同学课下可以试一试。
(三)课时作业
1.计算并验算。
3.64+0.4821.56+6.747.85+9.19
41.2-15.68.24-3.5611.65-7.39
答案:4.1228.317.04
25.64.684.26
解析:【考查目标1】正确列出竖式计算并验算,注意计算的结果能化简的要化简。
2.小丽家两个月的电话费和上网费如下表,把表填完整。
答案:略。
解析:认真观察表格,分别计算出4月、5月两种费用的总数和每项费用两个月的总数。
3.解决问题。
(1)杯里的水有多少千克?
答案:0.95-0.35=0.6(kg)
解析:【考查目标3】认真观察,第一幅图中空杯子的质量是0.35千克,装水后的质量是0.95千克,用0.95千克减去0.35千克就是杯子的质量。
(2)妈妈买了一瓶蜂蜜,连瓶共重2.5千克,用去一半蜂蜜后连瓶共重1.5千克,吃了多少千克?蜂蜜的瓶子重多少千克?
答案:2.5-1.5=1(千克)2.5-1×2=0.5(千克)
解析:【考查目标3】认真分析题意,先算出减少的质量就是一半蜂蜜的质量,再算出一整瓶蜂蜜的质量,用总质量减去蜂蜜的质量就是瓶子的质量。
教学内容:
人教版四年级下册71-72页
教学目标:
1、基本知识:在自主计算的过程中,通过体验,感悟,能归纳总结小数加、减法笔算的一般方法。
2、基本技能:能用竖式计算小数加、减法,理解算理。
3、基本思想:在学生已有知识的基础上,自主尝试计算小数加、减法,并和整数加减法进行比较,渗透迁移类推思想和比较归纳的数学思想。
4、基本活动经验:在竖式计算的过程中积累思考的经验和探究的经验。能正确计算小数加减法,提高计算的.正确率。渗透应用意识。
5、四能目标:引导学生读懂情境,从问题入手,经历计算过程,理解算理,并尝试着解决生活中的实际问题,培养学生分析问题及解决问题能力。
6、情感与态度:在学习活动中体会数学与生活的联系,激发学生的求知欲望,培养认真、刻苦的学习习惯。
教学重点:
小数加减法笔算方法。
教学难点:
小数点对齐,也就是相同数位对齐的道理。
教具准备:
幻灯片
教学过程:
一、课前放松,活跃气氛。
师:同学们,上课之前,咱们先放松放松,老师给大家准备了一段小视频,我们一起来看看,好不好?
(播放游乐场过山车游玩视频)
师:视频里这是玩的什么游乐项目啊?大家看完这段小视频有什么感受啊?
生:过山车。我觉得很刺激,害怕,激动、、、、、、(找2-3人)
师:老师也觉得非常具有挑战性,而且老师也比较喜欢玩这个项目。大家都去过游乐园吗?你们去游乐园都喜欢玩什么游乐项目啊?
生:海盗船,激流勇进、、、、、、(找3-4人)
师:你能给大家介绍一下这个游乐项目吗?
师:好玩吗?听着就觉得很刺激!
师:哇,通过你的介绍我觉得真的很好玩。
二、创设情境,激发兴趣,揭示任务。
师:通过课前对大家的了解,老师发现大家都特别喜欢去游乐园玩,如果周末我们可以去游乐园玩一天的话,你想玩什么游乐项目啊?
生:碰碰车,旋转木马,旋转秋千,水上滚筒,跳床、、、、、、(找2-3人)
师:听着大家说的就觉得有趣,在出发之前,你想为游玩准备些什么东西呢?
生:巧克力,伞,照相机,帐篷,水,零食等。(找3-4人)
师:大家想的真周到!我想带一些食品是必须的。老师为大家在超市里选出了一些食品,我们一起来看看。
师:出示课件:薯片、火腿肠、面包、水和巧克力(一起出)
师:这么多食品,请大家仔细观察一下,图上有哪些数学信息,看谁发现的信息最全。
生:我发现每袋薯片4.29元,每个面包*5元,一袋火腿肠9.61元,一袋巧克力14.39元,一瓶矿泉水2.58元。。。。。。(找2个学生来说,一定引导孩子说完整话,因为图中的信息多,老师最后在带领学生梳理一遍)
师:真棒!通过观察我们发现了这么多的数学信息,那你能根据其中的两个数学信息提出一个数学问题并且用竖式进行解答?
生:能
师:那同学们根据其中的两个数学信息自己提出一个数学问题,并尝试着在练习本上用竖式进行解答。
(指名两名学生板书解答过程 一个加法问题一个减法问题)
师:解答完后小组交流一下,你提出了什么数学问题,并且说一说你是怎么计算的,开始!(孩子交流时,老师参与其中,心中有数)。
设计意图:两位小数加减法是在学生掌握了简单的一位小数加减法的基础上进行的。培养学生利用迁移思想尝试解决问题,以学生为课堂的主体,放手放学生去尝试。
三、提出问题 自主探究 归纳交流
师:请大家坐好,刚才大家交流的都很认真,我们先来看看黑板上的这道题,你给大家说一说你提出的是什么问题,是怎样解答的?其他同学要认真听,看他的想法对不对。(学生到讲台给大家边说边讲)
生:我提的问题是一袋薯片和一个面包一共多少元?
师:你是怎样列式的?
生:4.29+*5=
师:大家看看这样列式对不对?
师:好,同学们,我们关注一下他的竖式,4.29+*5,你接着说,你为什么这样列竖式?
生:4和6都要写在个位上,4和2写在十分位上,5和9写在百分位上。
师;也就是个位和个位对齐,十分位和十分位对齐,百分位和百分位对齐,也就是什么对齐?
生:相同数位对齐。
师:小数点对齐了,也就做到了相同数位对齐。你说的太棒了,谁能像它这样说一说为什么这样列竖式?
生:找2-3人。
设计意图: 本节课的难点就是理解小数点对齐,也就是相同数位对齐。在第一个孩子表达列竖式方法的时候,老师引导孩子用规范的数学语言表述,同时面向全体学生,强化对这一知识点的理解。
师:请你接着说各个数位上的数怎样相加的?
生:百分位9+5满十向前进一得14,十分位2+4+1得7,个位4+6满十向前进一得10,小数点对齐,最后就是10.74。
4. 29+ 6 . 45=10. 7 4
师:说的非常好,谁还提出了加法的问题,到前面跟大家交流一下。
生2:我的问题是一袋薯片和一袋火腿肠一共多少元?列式是4.29+9.61。
师:这样列式对不对?竖式是4.29+9.61,大家听他说一说,为什么这样列竖式?
生:我把相同数位对齐。百分位9+1满十向前进一得10,十分位2+6+1得9,个位4+9满十向前进一得13,小数点对齐,得13.90.横式写13.9
师:你能说说理由吗?为什么写13.9,去掉末尾的0?
生:根据小数的性质末尾的零可以省掉。
师:非常好,根据小数的性质,写横式时末尾的零可以省略不写。
设计意图:对于小数的性质这一所学习过的知识活学活用,使孩子能够注意到问题并能自己解决问题。
师:谁还提出了加法的问题?
生3:我的问题是一瓶水和一袋巧克力一共多少钱?列式是2.58+14.39。
写竖式时相同的数位对齐从低位加起,8+9满十向前进一得17,十分位5+3+1得9,个位2+14满十向前进一得得16,最后得16.97.
师:每一步说的非常清楚,我觉得你提的这道题很有难度啦,每一个数位都要向前进位,你能告诉大家,计算时需要注意些什么吗?
生:要注意小数点对齐,满十向前一位进一。(找2人说一说)
师:通过刚才的交流,我们知道小数加法列竖式时要做到相同的数位对齐,(板书:小数点对齐,也就是相同数为对齐)计算时满十向前一位进一,不要忘了加小数点。
设计意图:引导孩子自主概括总结的能力,同时为计算小数减法做基础。
师:看来两位小数的加法大家会做了,我们再来看看黑板上这道减法题是怎么做的。刚才这位同学,你说说你提的什么问题?(学生到讲台给大家边说边讲)
生1: 我的问题是一袋面包比一袋薯片贵多少元?
列式*5-4.29。
师:大家来看看他的式子写得对不对?
生:对。
师:同学们认真听他说说,为什么这样列竖式。
生:我把相同数位对齐。
师:你能具体的说一说,相同数位怎么对齐吗?
生:也就是个位和个位对齐,十分位和十分位对齐,百分位和百分位对齐。
师:这样对齐也就表示什么对齐?
生:相同数位对齐。
师:好,下面是怎么计算的?
生:从百分位算起,5-9不够减,向前借一得6,十分位4变成3减2得1,个位6减4得2,结果是2.16.
师:你做的非常好,谁还提出了减法的问题?
生2:我的问题是一袋巧克力比一袋火腿肠贵多少元?列式
14.39-9.64。
我把相同数位对齐,百分位9-4得5,十分位3-6不够减,向前借一得7,个位14变成13-9得4,结果是4.75.(学生说完后教师评价)
师:好,谁还提的是减法的问题,也想给大家展示一下。
生7:我的问题是一袋巧克力比一袋面包贵多少钱?列式14.39-*5。
我把相同数位对齐,百分位9-5得4,十分位3-4不够减,向前借一得9,个位14变成13-6得7,结果是7.94.(学生说完后教师评价)
师:解答这道题你有什么要提醒给大家的吗?
生:列竖式时要把小数点对齐也就是相同数位对齐,计算时不够减要向前一位借一。
师:谁再说说,计算小数减法应该注意些什么?(找两人说)
师:的确小数减法和小数加法一样,列竖式时要把相同数位对齐,计算时不够减要向前一位借一。
设计意图:及时小结并强调计算小数减法和小数加法一样,都要做到相同数位对齐,突出重点。
师:(组织学生做好,看黑板,对照板书总结)通过刚才的学习,我们自己提出并解决了这么多小数加减法(教师边说边板书)的问题,要想知道我们这些问题解答的是否正确,可以进行验算,谁来说一说小数加法可以怎样验算?
生1:两个加数交换位置再相加。
生2:也可以用和减其中一个加数验算。
师:那小数减法呢?
生1:减数加差。
生2:被减数减差。
师:说的非常好,请同学们把你刚才解决的问题在选择一种方法演算一遍,看你算得对不对。(找两个学生验算黑板上的两个问题)
(学生做完后看黑板订正黑板上的验算)
设计意图:计算小数加减法不仅考察学生的仔细认真的计算能力,教师还要注意引导学生养成验算的好习惯。
师:看来同学们都算对了,通过这节课的学习,我们知道计算两位小数的加减法时,要把小数点对齐,也就是相同数位对齐。同学们,老师这收集了几位同学的作业,大家看看他们做的对不对。(出示投影)
四、巩固练习 应用拓展
一 出示下面的计算对吗?把不对的改正过来。
7 . 0 3 1 5 . 6 2 2 3 . 4 7 . 8 5
+ 0 . 9 8 - 7 . 4 6 - 1 3 . 4 + 9 . 1 9
————— —————— —————— ——————
7 . 0 1 8 . 2 6 1 0 0 1 7 . 0 4
(逐一看说理由)
师:大家来看看这几道题,自己先思考一下每道题有没有什么问题,再和你的同桌说一说。
师:大家的眼力真好,发现了同学的问题,还帮助他们改正了过来,老师相信大家在计算时肯定不会出现这些错误,我们做几道题试试。
设计意图:调动学生做题积极性,并能发现计算过程中可能会遇到的问题同时也是提醒学生不要犯同样的错误,提高计算正确率。
五、计算下面各题。
2.98+0.5612.53+4.676.07+4.895.64-1.787.2-0.815.62-7.46
师:一共六道题,分成三组。
师:独立列式解答,并展示学生答案,师生共同分析对错,强调需要注意问题。
师:全做对的同学举手,大家真棒。同学们,小数在生活中的应用非常广泛。比方说,去超市买东西,评比体育测试的成绩,比较人的身高体重,都会用到我们今天学习的小数加减法,希望你们能够用这节课的收获去解决更多的生活问题。
师:刚才咱们只做了其中的两道题,剩下四道计算题还有这道图形题是我们书上做一做的题,我们留作课下练习。好,同学们,下课。
——四年级数学《小数的加减法》教学反思3篇
小数的加法和减法是从复习整数加减法的计算方法入手的,简单的小数加减法笔算来源于整数笔算的知识迁移,对学生来说自然过渡并不存在难度,只不过是数的范围扩大了,学生感觉有些陌生。但在现实的生活中,许多学生在购物时已经有了小数计算的经历及自己的方法,因此我在课堂开始创设购物等情境,从日常生活拉近了学生与新知的距离,充分调动学生的学习积极性。同时通过学生提出问题,尝试解决问题,最终概括归纳出小数加减法的算理,并能掌握正确的计算方法。引导学生充分展示自己的思维,注重培养学生概括归纳、分析运用的能力。
小数加减法计算环节,用竖式计算是较常用的方法。它跟整数的加减法有很多相同的地方,但也有不同。我把这节课的重点和难点定位为“列竖式要对齐小数点”。相同数位的还好对齐,尤但是是整数找不到小数点,又无实际情境依托。这时我引导学生把算式搁置在具体情景中(以元为单位),钱是人们关心的,也是经常遇到的问题,在这里我要求同学再探讨,怎么列竖式进行计算,为什么要这样列,数位对齐(即小数点对齐有什么意义),不对齐可以吗?为什么?通过探讨将其都转换成相同位数的小数,便于对齐相加减,学生按照这样的方法列竖式后,正确率明显提高。
练习过程中,我将练习题难易度呈梯状出示,由浅入深降低了难度,并提高了学生探究的兴趣。设计习题时还以学生为依托,让学生根据自已爱好,自编算式,顺着学生的思维走,把学生思维闪光点作为“挖掘点”。这次课上我尽力肯定孩子的优点,如:思维清晰、讲解有条理、书写计算认真等优秀学习品质。同时,教学中我还经常让学生运用所学知识去解决生活中的实际问题,使学生在实践数学的过程中及时掌握所学知识,感悟数学学习的价值所在,从而增强学好数学的信心,学会用数学的眼光去看周围事物,想身边的事情,拓展数学学习的领域。使学生真正体会到“数学有用,要用数学”,从而激发学生的学习兴趣。
通过教学这节课,我对教学工作又有了新的认识和改进,课堂是学生的知识的源泉,更是学生个性张扬的舞台。我还要不断提高自己的教学素养,提高自己专业素质。实践中正是有了一些缺憾,才让我深刻反思自己的课堂,才能让我在专业成长的道路上走的更远,走的更踏实。
数学课程标准中明确指出:“数学与生活紧密联系,数学来源于生活,而又服务于生活。”我们的数学教学就是要引导学生学生去“解读”生活中的数学现象,让学生学会运用数学的思维去观察、分析现实生活,还原教材的本来面目,不断沟通生活中的数学与教科书上的联系,使生活和数学融为一体。
小数对于学生来说并不陌生,课前的购物活动能够使学生真实地感受到数学就在身边,从学生的生活经验和已有知识出发,将抽象的数学知识寓于现实的、有意义的学习活动中,并有效的在教学与生活中架起一座桥梁。学生在生动有趣的活动中不仅完成了对新课内容的建构,而且真切地体会到了数学来源于生活,又应用于生活的真谛。
激发学生的学习兴趣,让学生实实在在地体会到数学在生活中的价值,充分挖掘“小数加减法”在生活中的原型,于是在众多的生活实例中我选取“购物”这一学生感兴趣的生活素材,恰到好处地把数学知识与学生的生活经验揉合在一起。在课堂上,首先引导学生观察购物清单,提出数学问题,由熟悉的“生活”情境引发问题,学生的探索必然是积极主动的,发挥学生购物付款的经验,对小数加减法作出不同水*的解答。
面对“列竖式为什么要对齐小数点”这个重点,而且也是本节课的难点,我先组织学生进行小组讨论,合作交流,从一个个富有个性的理解和表达中,再让学生自己提炼出“小数加减法”的计算方法,这些在传统的教学中需要教师去总结、去归纳,但这个知识点在这节课中却是在学生充分体验、感受的基础上被自主发现的,成为了学生对知识进行“再创造”的成果。
学生早在三年级的时候就已经初步接触过小数的加减法,会算简单的小数加减法,对计算要求也有过初步的了解。而本节课的学习之前,学生对小数有了进一步的认识,理解了小数的意义和性质,旨在学会小数加减法的笔算方法。
本节课的学习之前,我设计了一个小问题,问:1+2等于几?学生理所当然认为是3,再问学生什么情况下,1+2≠3,学生觉得很不可思议,怎么都不能理解。当我提醒学生可以试试加上单位,学生很举出很多例子:1厘米+2分米≠3分米,1角+2元≠3元等等,借此学生能深刻感受到只有单位统一才是1+2=3。在此基础上,出示345+2,3.45+0.2这两组题,问学生如何说明为什么3。45+0.2等于3.65而不是3.47,让学生用自己的让方法说明算理。
整堂课,学生在充分的练习与实践中将笔算方法掌握,突破了重点“小数点对齐”即“相同数学位对齐”,以及难点“不同数位的小数可补0”。 总之,整个过程体现“学生主体,教师主导”的互动模式,让学生通过自身的思考、体验、理解、吸收、内化等过程进行知识建构,让学生在体验中思考,在思考中理解,在理解中提升知识的应用能力。在实践中发展解决问题的能力。
本节课仍存在一些不足:对学生的列竖式要求应力求规范,比如个别学生竖式写得不够整齐、端正,没用直尺打横线等,今后应及时纠正不规范的书写格式,加强学生的养成教育。算理的渗透不足,应加入以元为单位的小数情境,让学生通过实际意义的小数明确为什么要相同数位对齐。我将在练习课中将本节课所缺失的补充进课堂,让学生更熟练地进行小数加加减法计算。
——四年级数学下册《小数意义》说课稿3篇
一、教学理念
教师的教学方案必须建立在学生的基础之上,新课程标准指出:“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水*和已有知识经验基础之上。学生的数学学习应当是一个生动活泼、主动而富有个性的过程,更让学生经历数学知识的形成过程。”
二、说教材
人教版四年级下册《数学》教材第四单元中“小数的产生和意义”是在三年级“分数的初步认识”和“小数的初步认识”的基础上教学的,这一内容既是前面知识的延伸,也是系统学习小数的开始。通过这部分内容的教学,使学生进一步理解小数的意义和性质,为以后学习小数四则运算打好基础。
三、说教学目标
遵循以上教学理念,因此我在制定本课时教学目标时注意联系生活,尽量联系学生身边的事物,充分利用有效资源让学生经历数学知识的探究与发现的过程,使他们在动手、动脑、动口中理解知识、掌握方法,学会思考、获得积极的情感体验,促进自身全面和谐发展,因此制定以下目标:
1、通过教具演示和联系实际使学生在初步认识小数的基础上知道小数的产生,理解小数的意义。
2、使学生知道小数是在实际生活中产生的,并有着广泛的`应用,认识小数与分数之间的内在联系、小数的计数单位,从而对小数的概念有更清楚的认识。
3、在学习过程中,让学生懂得生活中处处有数学,了解数学的价值,增强对数学的理解和应用数学的信心。
四、说教学重、难点
本课时的教学重点是使学生明确小数的产生和意义、小数与分数的联系、小数的计数单位,从而对小数的概念有更清楚的认识。
教学难点是小数的意义的探究过程。
突破重难点的方法:
使学生深刻理解把一个整体*均分成10份、100份、1000份……这样的一份或几份可以用分母10、100、1000……的分数来表示,这些分数的计数单位分别是十分之一、百分之一、千分之一……写作小说分别是0.1、0.01、0.001……通过让学生在小组内讨论、合作交流的学习中解决0.1里面有几个0.01;0.01里面有几个0.001,让学生深刻体会每相邻两个计数单位间的进率都是10。
这节内容选择的教学方法为尝试法、讲授法、练习法等,选择的依据是学生已有的知识的情况和学生的接受能力。
五、说教学流程:
为了达到上述目标,我的教学设计包含有四个环节的内容:
第一个环节是创设情境,引入新课。
教师通过让学生先估测再测量2米长的红丝带和60厘米长的绿丝带、量数学课本的长的估一估、量一量的游戏活动激发学生的学习热情。当教师让学生用米作单位说出它们的长度时,学生心理产生了矛盾,因为有些测量结果不够1米,无法得到整数的结果。这时教师引出不够1米的部分如果用米作单位,需要用其它数来表示,由此引出“小数”。学生通过测量亲自体验了小数产生的必要性,从而喜欢上小数,对什么是小数产生了神秘感,激发了学生的学习兴趣和探究的欲望。
第二个环节探究小数的意义。
小数的意义是个十分抽象的概念,小学生理解起来比较难。新课程理念下的概念教学应改变死记硬背、机械训练的方式,防止重结论,轻过程的做法,积极组织有效的数学活动,倡导学生主动参与、乐与研究实现师生互动、共同研究探讨的方法,让学生在数学活动中去体验、去思考,构建数学概念。因此,在教学中我力求引导学生在测量、观察等操作的基础上,从直观的1米*均分成10份、100份、1000份,让学生用米为单位分别用整数、分数、小数来表示,从而过渡到一位小数、两位小数、三位小数的意义的形成。学生始终参与到概念的探究过程中,通过比较、归纳、分析和综合最后抽象出小数的意义。
第三个环节是巩固练习、拓展提升。
当学生成功解决一个问题后趁热打铁,将它拓展变化来解决生活中的问题。比如:给生活中的小数分类。老师没有直接告诉学生小数的计数单位是什么;每相邻两个计数单位间的进率是10,而是通过闯智慧关的游戏方式让学生从解决问题中发现、归纳出来。我认为这样能促使学生进行多角度、多方面、多层次的探索,以练习的形式探索出小数的计数单位、以每相邻两个计数单位之间的进率是10。符合学生的认知规律,培养学生应用所学知识解决问题的能力,发散了学生的思维,培养学生的合作交流意识和创新意识。
第四个环节是师生进行全课小结。
教师问:“这节课的学习内容是什么?你有什么收获?”来对本节课所学的知识加以梳理总结,最后教师出示大发明家爱迪生的一句格言:天才=1/100的灵感+99/100的勤奋,让学生用小数把等式中的分数表示出来,达到巩固新知的目的。
教师:“这是大发明家爱迪生用加法描述的一句格言,你明白其中的道理吗?”从而让学生明白:人必须勤奋才能有所成就!祝同学们都能成为天才!人才!成为一个对国家有用的人。
——四年级数学教案《小数的加法和减法》3篇
(一)教学目标
1.让学生自主探索小数加、减法的计算方法,理解计算的算理并能正确地进行加、减及混合运算。
2.使学生理解整数运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算,进一步发展学生的数感。
3.使学生体会小数加、减运算在生活、学习中的广泛应用,提高小数加、减计算能力的自觉性。
(二)教材说明和教学建议
教材说明
1.本单元的内容结构及其地位作用。
在人类生产和生活中,诸多问题的解决,离不开小数加、减法。它是数的运算中不可缺少的内容,是形成良好的计算能力的重要组成部分。
本单元的主要内容有:小数加、减法、混合运算以及整数的运算定律推广到小数。以上内容具体编排如下表:
2.本单元教材的编写特点。
(1)选择学生熟悉的、感兴趣的体育运动素材,作为计算教学的背景。
本单元从人类五彩缤纷的生活中选择体育运动为背景,选择运动员在某些运动项目中的得分情况或运动器材的价格为学习小数加减法的素材。它紧密联系2004雅典奥运会上*运动员取得的骄人成绩,联系学生在学校的运动情况,联系与体育运动相关的人或事来开展小数加减法的教学活动。这样的选择十分贴近学生的兴趣和爱好,利于对学生进行爱国主义和强身健体的教育。在这样的背景下学习小数加减法,能使学生体会小数加减计算对人类活动的重大意义,体会数学的工具性作用。同时激发学生学习小数加减法的兴趣,涌动长大也要为国争光的豪情,提高学习的主动性和自觉性。
(2)小数加减运算集中编排。
小数加减法的计算方法基本相同;计算的重点、难点都集中在小数点的处理问题上;计算的结果都要考虑是否要用小数的基本性质使之变成最简。基于以上原因,所以把小数加减法放在同一个例题(例1)中进行教学。这样既突出了知识之间的有机联系,又节省了教学时间,使学生能以较快的速度形成小数加减的良好认知结构。
(3)为学生提供自主探索小数加减笔算方法和解决问题多种策略的空间。
小数加减法与整数加减法在算理上是相通的。对于小数加减法,学生有似曾相识的感觉。教材紧紧抓住学生的这一认知特点,有意不给出小数加减法的计算过程,不概括小数的加减法法则,而是刻意引导学生利用已掌握的整数加减法的旧知迁移到小数加减法这一新的情境中。如例1、例2中,让学生自主探索小数加减法的竖式写法,经历计算的全过程,同时经过合作交流,共同总结笔算的一般方法,理解“数位对齐”就是“小数点对齐”的道理,知道当计算结果的末尾有0时,应根据小数的基本性质省略0不写,使结果形式达到最简。又如,例3中的小数加减混合运算,出示了解题的三种不同思路,为学生用不同的方法解决同一问题作了积极的引导。
(4)情境呈现方式故事性强,灵活多样。
本单元的教学内容看似枯燥,但由于创设了故事性强,灵活多样的呈现方式,使小数的加减运算变得具有磁铁般的吸引力,使学生在解答用小数计算的实际问题时,能始终带着饱满的热情思考解决问题的不同方案,掌握小数运算的基本方法。如,例1,父子看雅典奥运会女子10米跳台双人跳水比赛,边看边计算成绩,形如场外裁判;例3,一家三口看环城自行车赛,边看边用自己的方式计算运动员还要骑的路程,有一种为运动员着急、鼓励运动员快速、顺利抵达终点的关爱情怀;例4,两位学生推测校运动会中本班4×100米接力赛的成绩,体现对班集体的热爱之情。从例1~例4,教材均用学生感兴趣的图片、表格以及图文相结合的形式,呈现学习内容。这些措施改变了以往小数计算中比较单一、严肃的学习面孔,使鲜活的体育活动和看似机械演练的小数运算融为一体,使计算、推理、概括这些抽象的数学活动变得令学生乐于接纳、乐于探究。
教学建议
1.选择近期对学生有较大影响的活动来学习小数加减法。
现实生活中,蕴含着小数加减计算的活动大量存在,这些活动中,哪些是在近期对学生影响较大的?是学生感兴趣的?这是我们选择素材的一条基本思路。因此,教学时,既可根据教材提供的运动场上的信息,特别是雅典奥运会中的一些运动项目为素材,也可根据当地生活、生产实际,如家庭用水、用电、用煤气的数量与价钱;农家各项农产品的产量、收入;购买有关生活、学习用品的价钱等等,都可作为学生学习小数加减法的素材,通过结合学生熟悉的生活来学习,使学生获得积极的情感体验。
2.鼓励学生自主学习小数加减法知识。
小数加减法和整数加减法,两者之间有着割不断的联系和相同之处。整数加减法的计算方法,学生在第一学段的三年级时就已经掌握了。因此,让学生充分应用旧知来自主学习小数的加减法成为本单元教学的一个重要策略。教学时,教师的职责是:帮助学生激活整数加减法的计算方法这一已有知识经验,并尝试用它来计算小数加减法;让学生明确列竖式时应如何对齐数位,懂得道理何在;学会用自己的语言表述自主尝试的过程和结果。通过自主学习本单元的知识,使学生懂得应用旧知来学习新知是获取知识的一条重要途径。
3.提倡解题策略的多样化。
为了使因材施教、让每一个人都得到充分发展的理念落到实处,教学时应关注不同学生解答问题的不同思路,积极鼓励学生用自己的方式思考问题,提出自己的解法。如,教学例1中解答“第二轮动作完成后*队领先多少分”的问题时,教师不宜作任何提示,而应让学生根据自身经验找到适当的解题方法。又如,教学例3、例4时,不必将教材中出现的各种解题思路率先呈现给学生,而是让学生在独立思考、自主解答的基础上,通过合作交流,领会多种不同的解题思路,感受解题策略的多样性和灵活性,达到提高数学思考能力和计算能力的目的。
4.引导学生逐步形成从现实情境中发现并提出问题的良好习惯。
数学课程目标之一,是培养学生解决问题的能力。培养学生解决问题能力的途径之一,就是使学生形成不断发现问题、提出问题的良好习惯。教学时,应引导学生充分利用教材提供的丰富素材,根据素材给出的若干信息去发现隐含在信息中的若干数学问题。如,例1显示的是父子二人观看女子双人跳水比赛的情境,当记分牌逐一显示*和加拿大运动员第一轮及第二轮动作完成后的得分情况时,引导学生思考:“根据第一轮动作的得分情况,你能提出什么问题?第二轮呢?”又如,教学例4时,当学生看到表格呈现4位学生“50米跑的成绩”时,引导他们发问:“看到这张表格,你能提出什么数学问题?”这样经常性地引导学生对教学中的若干信息发问,天长日久,学生就能养成面对周围世界的诸多现象不断发问的良好习惯。
5.这部分内容可用6课时进行教学。
(三)具体内容的说明和教学建议
1.主题图
编写意图
(1)选择对学生有感染力的体育运动为背景。
呈现2004年雅典奥运会上*跳水运动员劳丽诗、李婷在女子10米跳台双人跳水比赛中的完美的空中动作照片,以及该项目中金、银、铜牌得主的跳水成绩。通过观察照片,让学生回味雅典奥运会中我国运动员创造的辉煌成绩,使学生体会一种自豪、一种激励,体会人类运动技巧给世界带来的无限风光。
(2)选择与小数计算紧密联系的运动项目为素材。
奥运会中,许多项目的成绩是通过小数计算来决定的。教材选择女子10米跳台双人跳水这一项目,是因为这项比赛过程的成绩计算就是小数加减计算(两位小数)的内容,而我国奥运健儿在此项目中荣获金牌。这样选择,既让学生学习了小数加减法,又使爱国主义教育润物无声。
教学建议
(1)以人类崇尚的体育运动为背景,学习小数加减法。
教学时,除显示主题图,还可充分利用现代信息技术手段显示雅典奥运会中我国运动员获其他项目金牌的图片,以及用小数记录他们获奖成绩的情境,由此引入小数加减法的学习。也可在此基础上,选用本校、本市*会中的内容(图片、用小数记录的各项成绩)作为小数加减法的学习素材。
(2)引导学生自主说出主题图下面表格的内容。
教学主题图下的表格时,可让学生说一说:①表头分了哪三类?(国家、运动员、奖牌)②金、银、铜牌的得主各是哪几个国家的运动员?③从中你想了解什么问题?学生可能会提出:我国运动员的决赛成绩比加拿大的高多少分?比俄罗斯的高多少分?……根据学生的提问,引入小数加减法的学习。
2.例1。
编写意图
(1)由本单元主题图创设的情境引入小数加减法的学习。
通过父子二人观看2004年雅典奥运会中女子10米跳台双人决赛的全过程,自然而然地引入小数加减法。教材用表格呈现我国运动员和加拿大运动员在第一、第二轮动作后的得分情况,呈现父子二人在知道得分后兴高采烈的对话:“*队领先3.6分”、“*队两轮的总成绩是111.60分”、“现在领先12.6分”……父子二人的对话促使学生思考:“3.6分、111.60分、14.6分是怎么算出来的`?”这样,为了解决这一个个的实际问题,小数加减运算便产生了。
(2)以故事形式动态呈现小数加减法。
与以往教材编写加减法的顺序不同,本例题是先学减法,再学加法,是以故事发展的先后顺序来编排的。由于要知道“第一轮动作后,*队领先多少分?”所以本例先安排小数减法的学习。接着,要知道“*队两轮的总成绩是多少?”所以再学习小数加法。这样安排,合乎情理,易于激发学生学习的热情和主动计算的兴趣。
(3)给学生提供自主计算与交流的空间。
两位小数的加减法如何笔算,教材没有给出详细过程,只有计算结果。如,竖式中的 “3.60、111.60”是怎样算出来的,教材没
有任何说明。它留给学生自主学习的探索空间,它刻意让学生经历自主列竖式、自主计算的全过程,它迫使学生应用已有的知识经验来解决新问题,通过自主探索或合作交流弄清“小数点对齐”的道理,弄清“得数的末尾如何去0简写”的道理。学生有了这一自主探索的经历,就多了一次自主获取知识的体验。
教学建议
(1)让学生自主阅读,表述题意。
本例题将故事、表格、数据、计算、思考融为一体,以学生喜爱的方式呈现出来。怎样让学生读懂这丰富的画面、理解其中的数学意义呢?一般的方法是让学生自主阅读。在自主阅读的基础上,再用自己的语言表述题意。如例1中上面一部内容,教学时应让学生有序的陈述自己理解的信息:①例题中的事情(父子二人观看2004年雅典奥运会跳水比赛);②表格的意思,特别说出我国和加拿大运动员在女子10米跳台双人决赛中第一轮得分的情况;③父子二人对话的内容。(父:*队领先3.6分,子:差距还不到4分。)
(2)设计让学生自主计算的教学过程,突出算理和算法。
由于学生已有整数加减计算的基础,教学时,应充分利用学生已有的这一知识经验,设计好让学生自主提问、自主计算、合作交流的过程。
①先教学减法。出示例1中上面一部分内容时,不出现小数减法的竖式,而是让学生根据表中的两个数据发问:“*队领先多少分?”或者根据父子二人的对话“*队领先3.6分”提出问题:“这3.6分是怎么得来的?”为了解决这一问题,引入小数减法,同时让学生自主列竖式计算。学生计算后,应引导说一说:
●如何列竖式?(突出小数点对齐的道理。)
●如何计算?(突出退位的过程。)
●竖式中的结果3.60与图中父亲说的“3.6”有区别吗?(突出根据小数的基本性质将结果简化。)
②再教学加法,并体现解题策略的多样性。
例1中下面一部分内容的情境是上面一部分的继续,是故事往下发展的一个过程。教学时,同样不要出现加、减法竖式,而是引导学生根据表中数据或父子二人对话的内容提出数学问题:“111.6分和12.6分是怎么得来的?”然后让学生独立列竖式计算。计算后,让学生说一说:
●怎样求*队两轮的总成绩?(用加法笔算)计算的结果“111.60”还可以怎样写?为什么?
●要求*队第二轮后领先多少分,怎么解答?
学生中会有不同的解答方法。如:
方法一:53.40 +58.20=111.60
49.80 +49.20=99
111.60 - 99=12.60
方法二:53.40-49.80=3.6(利用前面的结果)
58.20-49.20=9
3.6+9=12.6
应引导学生进行交流,体会解题策略的多样性和简洁性。显然,方法二从计算数据来看,更简单,且充分应用了已获取的相关条件(3?6)。
●对比两种解法的结果:12?60与12?6,突出小数的基本性质的应用。
3.例2及“做一做”。
编写意图
(1)让学生在合作活动中总结小数加减计算的一般方法。
小数加减计算应注意的问题不要求学生记忆,只要理解就行,教材组织学生应用交流的方式,共同总结出小数加减计算的一般方法。通过交流,理解小数点对齐就是使相同数位上的数相加减;理解如果得数的末尾有0,就应根据小数的基本性质将0去掉,使小数的书写简洁。
(2)通过“做一做”的练习,使学生进一步体会小数加减法在生活中的广泛应用,进一步巩固小数加减法的计算,同时会用不同的方法,包括使用计算器进行小数加减法的计算和验算。
教学建议
(1)引导学生逐步有序的总结出小数加减法要注意的问题。
总结时,采用合作交流的方法,分两步进行:①先让学生根据例1中各竖式的计算过程和结果说一说计算时应注意什么。这时,学生总结是凌乱的,不完整的。②在学生自由总结的基础上,引导学生有序地回忆自己在进行小数计算时先干了什么(列竖式);列竖式时应注意什么(小数点对齐);对于计算的结果,当小数末尾有0时,是怎么处理的(去掉末尾的0)。这样,不但帮助学生总结了小数加减法的一般方法,而且使学生懂得总结、概括的一般方法。
(2)提醒学生用不同的方法对计算结果进行验算。
两位小数加减法,计算容易出错。为保证结果的准确性,应提醒学生用不同的方法检验。除根据算式中各部分之间的关系来检验,还应鼓励学生用计算器进行检验,帮助提高使用计算工具的能力。
(3)“做一做”中的第1题是人人都必须完成的基本练习,应要求学生用一定的方法进行验算,能对自己的计算结果作出正确与否的评判。
(4)“做一做”中的第2题突出计数器在小数计算中的工具性作用。学生作业时,可提出要求:先用笔算,再用计算器验算。
4.关于练习十六中一些习题的说明和教学建议。
第1题,是小数口算练习,它综合了两方面的知识:100以内加减法的口算和相同数位上的数才能相加减的算理。学生计算如果出错,主要原因有二:一是粗枝大叶、计算不专心造成的,如看错数据,手写的与口算的内容不一致等;二是由于100以内的口算不过关或算理不清楚造成的。这时,应及时帮助学生查找其中原因,及时纠正错误。
第2、5题,是小数加减的笔算练习。应要求学生:(1)将笔算竖式尽可能写得漂亮些;(2)仔细计算;(3)自觉验算,知道如何判断自己计算的正误。
第3、4题,是小数计算在实际生活中的应用。第3题可改成让学生自主提问的方式:看到表中的数据,你能提出什么数学问题?将小数的计算与实际生活联系起来,使学生感受到小数计算在日常生活中的应用。第4题通过计算电话费和上网费,使学生对复式统计表有进一步的认识。
第6题,结合人民币、质量单位和长度单位进行小数计算。这样的计算在现实生活中用得极为普遍。学生计算时,应作如下提示:①想清楚不同计量单位之间的进率;②计算时,可先将复名数改写成小数,然后再计算;③用不同的方法进行检验。
第7、8题,是与体育运动相关的练习。第7题通过购买足球和排球,使学生体会组合的思想方法,体会解题策略的多样性。第8题有着良好的教育功能,一方面使学生了解一些体育方面的信息:某些女子田径项目的*纪录和世界纪录;另一方面通过计算这些女子田径项目的*纪录和世界纪录的差距,体会我国要赶超世界一流水*,还须付出更大的努力。
5.例3。
编写意图
(1)以学生的家庭生活(观看环城自行车赛)为背景学习小数加减混合运算。
本例创设的学习情境类似例1,它来源于学生的家庭生活。通过观看环城自行车赛,了解自行车比赛的一些知识。知道在长达数天的比赛过程中,运动员和观众都会随时计算已完成的赛段里程和未完成的赛段里程,这就引入了小数的加减混合运算。这一情境的创设使学生体会小数加减混合运算是随比赛的进程而产生的,是因解决问题的需要而产生的。
(2)鼓励学生用不同的思路解决问题。
要解决“完成比赛,自行车运动员还要骑多少千米”的问题,教材呈现了三种不同的解题思路,尽管这三种思路的思维水*处于同一个层面,但它显现的意义是让学生体会生活中许多问题的解答往往都有多种思路,多条途径。当思维的角度不同时,就会产生不同的解答方法。
(3)形成良好的家庭学习氛围。
学习型家庭是学习型社会的基础。本例通过一家三口计算自行车运动员未完成的里程数,塑造了一个热爱学习的家庭榜样。通过本例的学习,使学生不但会进行小数加减混合运算,同时也让学生产生和爸爸妈妈共同学习的向上愿望,让每个家庭都有一个良好的学习氛围。
教学建议
(1)继续让学生自主阅读题意。
与例1的学习类似,先让学生自读题意,再用自己的话表述出来。尽可能创设让学生表述的空间,如同桌互说、自愿上台说。通过这些活动,逐步培养学生的语言表达能力。
(2)分步骤呈现例3。
①可利用课件或教学挂图先出示例3的上面一部分,即问题部分。在学生理解了题意后,让他们自主解答“完成比赛,自行车运动员还要骑多少千米?”
②在学生自主解答的基础上,再出示例3的下面一部分。先交流各自的解题方法,请不同解法的学生上台自己书写解题算式,自己向全体学生解说自己的想法。再组织学生认真观察三个不同的综合算式,从中发现算式483.4-(39.5+98.8)与算式483.4-39.5-98.8是相等的。
(3)使学生懂得使用计算器进行稍复杂的小数加减混合计算。
让学生用计算器对自己列的算式算一遍,一方面检验自己笔算的结果,另一方面熟练使用计算器的方法。
6.关于练习十七中一些习题的教学说明和教学建议。
第1题,是经常要进行的口算练习。练习时,既要引导学生用常规方法口算,更要引导学生注意方法的合理性和灵活性,使口算也能成为培养学生能力的一个载体。如,口算“7.1-3.5”时,可以这样口算: 7-3.5+0.1,也可以这样口算,“7.1-3-0.5”。它灵活应用了题中数据的特点,使口算不但算得正确,而且灵活。
第2题,是小数加减混合运算的另一种表示方式,用这种方式呈现,一方面体现了加减混合运算的过程,避免了老面孔带来的单调感,可提高学生计算的乐趣;另一方面,这种方式还渗透了函数思想。如,当一个加数不变(5.47),另一个加数变化时,和也要发生变化;减数不变(9.86),被减数变化时,差也要发生变化。
第5、6题,都是小数加减混合运算。呈现的方式和要求略有不同。第5题不带括号,只须按从左到右的顺序算;第6题中带有括号,须先算括号里面的,再算括号外面的,算完后还要验算。练习时,应提醒学生看清算式再计算。
第3、4、7、8题,都是需要用小数加减混合运算来解决实际问题的练习。每题解答后,都应鼓励学生用计算器进行验算。
第9题,是突出小数与十进分数之间的联系,要求学生先将分母为10,100的分数改写成小数,再进行计算。
第10题,突出计算器的工具性作用,通过练习,使学生体会用计算器计算日常“流水”账,十分准确、方便、省时。
第103页的思考题,可让多数学生参与练习。应引导学生先画示意图表示题意(如图),然后根据数据特点用简便方法计算。
物体在下落前距地面的高度为:
4.9+(4.9+9.8)+(4.9+9.8+9.8)+(4.9+9.8+9.8+9.8)
=4×4.9+6×9.8(或8×9.8)(尽管这时学生还未学小数乘法,但用计算器可以计算。)
=78.4(米)
7.例4及“做一做”。
编写意图
(1)以校园体育运动为背景,学习加法运算定律在小数加法中的应用。
学校体育运动是校园生活的一个重要组成部分。用数学来描述、记录运动员的成绩是学生熟知的。本例以某班四位同学参加4×50米接力赛为内容,以这四位同学50米跑的成绩为素材,引入加法运算定律在小数加法中的应用,显得十分自然。
(2)在不同算法的比较中体会运算定律在运算中的简化作用。
教材采用对比的方式呈现小莉和小红两位同学不同的计算思路,通过对比,使学生看出两种算法的结果是一样的。从而直观感知加法的运算定律在小数运算中同样适用。并进一步体会用加法的运算定律进行计算确实方便又快捷,使学生在今后的小数加法运算中,能根据数据特点自觉地应用加法运算定律进行简算。
教学建议
(1)为了让学生理解加法运算定律在小数中仍然适用,除教材提供的例4外,还可以补充一些例子。如,计算3.56+1.60+2.44和1.60+(3.56+2.44)两个式子,说一说你发现了什么?通过让学生计算2~3组这样的式题,使学生体会加法的运算定律推广到小数后仍然适用。这个过程,使用了不完全归纳推理的方法,让学生感受了不完全归纳推理的合理性。
(2)尊重学生的个性差异,鼓励学生用不同的方法进行计算。
关于本例的计算,学生中有多种不同的方法。教学时,应给学生一定的独立计算时间,让学生能充分展示个性化的计算思路。如,有的学生根据4个加数中的整数部分相同的特点,这样计算:
8.42+8.46+8.54+8.58
=8×4+(0.42+0.58)+(0.46+0.54)
=32+1+1
=34
上述算法中,既有加法的运算定律的应用,也有根据数据特点将加法转换成乘法,使计算更加简便。教师对这些能综合应用所学知识进行简算的学生要给予鼓励和适当的评价,使计算不仅仅是一种技能,而是上升为一种技巧。
(3)“做一做”中第1题的填空是让学生进一步熟悉加法运算定律的练习。练习时,应关注学习有困难的学生,使他们通过这组填空题的练习,真正掌握加法运算定律的内涵。
第2题中的简算有的要用到加法的运算定律,有的要用到减法的运算性质,如计算5.17-1.8-3.2,就要用到减法的运算性质。练习时,须提醒学生认真审题,思考清楚了再下笔。
8.关于练习十八中一些习题的说明和教学建议。
第2题,是应用加法运算定律进行简算的练习。练习时,应让学生写出简算步骤,并说明理由。如,计算“1.29+3.7+0.71+6.3”,其过程如下:
1.29+3.7+0.71+6.3
=(1.29+0.71)+(3.7+6.3)(加法交换律和结合律)
=2+10
=12
第3题,是培养学生自觉应用运算定律或运算性质进行简算的练习。练习时,要求学生按序如下操作:①认真审题,根据题中数据特点作出判断,看看能否简算;②若能简算,则想清楚是利用加法的运算定律还是利用减法的运算性质进行简算;③写出简算过程。
第4、5题,是加法运算定律在解决实际问题中的应用。
第4题的练习背景和计算方法是例题4的继续。练习时应注意两点:①表中最后一栏“可能的总成绩”表示的意思应让学生自己解释。在明确所求问题的情况下再进行计算;②由于本题中所有小数的整数部分都相同,可提示学生根据数据特点综合应用多种方法进行简算。
第5题,练习的素材来自生活中常用的购物发票。通过模拟售货员计算购物的总价和交易找零的余款,使学生学会看懂发票的内容,理解发票的作用,提高生活适应能力。练习时,先让学生想一想发票中的方框里要填什么,怎样列式,然后再动手做。做完后再用计算器检验。
第7、8题,是培养学生“能从现实生活中发现并提出简单的数学问题”的练习。第7题以我国20年来(1978~1998年)城镇及农村人均居住面积的变化为素材,引发学生提出相关的数学问题。在解决这些简单的问题中,教师一方面应引导学生充分应用已有知识进行计算,体现算法的多样化,另一方面又应为后续学习小数的乘除法做好准备。如,当学生提出的问题是“1998年城镇人均居住面积是1978年的几倍”时,学生的解法可能有如下几种:
(1)9.3÷3.6≈2.5(多数学生不会笔算,只能用计算器算。)
(2)3.6+3.6=7.2(1998年城镇人均居住面积大约是1978的2倍多一些)
(3)9.3-(3.6+3.6)=2.1(大约是2.5倍)
对于上述第(1)种解法,可引导学生思考:除数是小数的除法能否变成除数是整数的除法进行计算呢?给学生充分的时间和空间进行合作探讨,为后续学习做好铺垫。
第8题,开阔了学生的视野,使学生通过计算了解到关于世界人口情况方面的信息。练习时,可充分利用丰富的网上资源,让学生知道地球最多能养活多少人口,从而体会控制人口增长是人类生存的一个重大策略。
第9题,是例1的继续。通过计算三个国家运动员5轮跳水的总成绩,进一步促进学生养成简算的良好习惯,使学生进一步体会运算定律在解决实际问题中确实有着广泛的作用。练习时,可采用比赛的方式,看看谁算得又对又快,真正掌握“对、快”的一般方法。
(四)参考教案
课题:整数运算定律推广到小数
教学内容:教科书104页例4及“做一做”、练习十八第1~3题、第7题。
教学目标:
1.通过有限个例证使学生理解整数的运算定律在小数运算中同样适用。
2.能根据数据特点正确应用加法的运算定律进行简便运算。
教具、学具准备:把练习十八第4题制成课件。
教学过程:
一、情境导入
课件显示育才小学春季运动会的场景,伴随声音响起:下一个项目是四年级组男子4×50米接力赛,请四年级各班做好准备。画面分别出示四年级4个班运动员50米成绩的情况表:(练习十八第4题,将(1)班与(4)班的成绩对换了。)
提问:根据这张表提供的信息,请你猜一猜,哪个班可能得冠军?四(1)班可能得第几呢?
二、经历用加法运算定律进行简算的过程,理解加法运算定律在小数运算中仍然适用
1.在交流中感受算法的多样化。
师:“请你用自己的方法先算一算四(1)班的总成绩,看谁算得又对又快。”
每个学生自主计算,教师巡视,及时发现学生中的不同算法。在多数学生都完成的情况下,请不同算法的学生上台写出自己的计算过程(或用实物投影仪展示不同算法的计算过程),并说明理由。学生的算法可能有以下三种:
①8.48+8.54+8.52+8.46
=17.02+8.52+8.46
=25.54+8.46
=34(秒)
②8.48+8.54+8.52+8.46
=(8.48+8.52)+(8.54+8.46)
=17+17
=34(秒)
③8.48+8.54+8.52+8.46
=8×4+(0.48+0.52)+(0.54+0.46)
=32+1+1
=34(秒)
2.在对比中感知较优的算法。
师:上述三种算法中,你认为哪一种较优?为什么?
引导学生先自己思考,自言自语或轻声说出较优算法的理由,然后在班上交流。让多数学生在交流中感受较优算法的依据有二:①应用了加法的运算定律;②根据数据特点将加法变成乘法。
3.推出加法运算定律在小数运算中同样适用。
师:你能用简便方法算出四(2)、四(3)、四(4)班的总成绩吗?算完后,用计算器验证你的结果,并预测冠军是哪个班,四(1)班可能得第几。
(1)要求每位学生先用较优的方法写出简算过程,并说明理由。然后集体反馈:
四(2)班:
8.40+8.56+8.61+8.39
=8.40+8.56+(8.61+8.39)或=8×4+0.40+0.56+(0.61+0.39)
=8.40+8.56+17 =32+0.40+0.56+1
=33.96 =33.96
四(3)班、四(4)班成绩分别是34?06秒、34?17秒(过程略)。
(2)全班学生用计算器验证上述结果。验证后将4个小数排队:
33.96<34<34.06<34.17,估测出冠军可能是四(2)班,四(1)班可能是第二名。
(3)师:“通过上面4次简便计算,你认为加法运算定律在小数运算中适用吗?你能否再举1~2个例子说明。”
学生举例说明。请1~2名同学将所举例子写在黑板上,全班交流、评判。通过多个有限的简算实例,帮助学生合情推出“加法运算定律在小数运算中仍然适用”。
(4)小结:请学生翻开教科书104页,说明例4就是今天学习的内容。然后引导小结,请学生默读并理解例4下面的一段话:“整数的运算定律在小数运算中同样适用。”
三、用加法运算定律进行简算
1. 基本练习。
自主完成“做一做”第1、2题,要求学生在每一题的后面写上简算的理由,做完后及时反馈。
2.综合练习。
(1)用竞赛的方法完成练习十八第1题。对于口算错误较多的学生,应帮助其分析原因,及时更正。
(2)自主完成练习十八第2、3题(第3题也可以在课外做)。提醒学生看清题目,弄清楚哪两个数合并能凑整,再应用运算定律进行简算。
(3)自主完成练习十八第7题。本题有两种不同的解题方案,一般学生只需做一种,对学有余力的学生可要求他们写出两种不同的解题方法。
3.提高练习。
计算:1+1.2+1.4+1.6+1.8+…+9.6+9.8+10
(一)教学目标
1.让学生自主探索小数加、减法的计算方法,理解计算的算理并能正确地进行加、减及混合运算。
2.使学生理解整数运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算,进一步发展学生的数感。
3.使学生体会小数加、减运算在生活、学习中的广泛应用,提高小数加、减计算能力的自觉性。
(二)教材说明和教学建议
教材说明
1.本单元的内容结构及其地位作用。
在人类生产和生活中,诸多问题的解决,离不开小数加、减法。它是数的运算中不可缺少的内容,是形成良好的计算能力的重要组成部分。
本单元的主要内容有:小数加、减法、混合运算以及整数的运算定律推广到小数。以上内容具体编排如下表:
2.本单元教材的编写特点。
(1)选择学生熟悉的、感兴趣的体育运动素材,作为计算教学的背景。
本单元从人类五彩缤纷的生活中选择体育运动为背景,选择运动员在某些运动项目中的得分情况或运动器材的价格为学习小数加减法的素材。它紧密联系2004雅典奥运会上*运动员取得的骄人成绩,联系学生在学校的运动情况,联系与体育运动相关的人或事来开展小数加减法的教学活动。这样的选择十分贴近学生的兴趣和爱好,利于对学生进行爱国主义和强身健体的教育。在这样的背景下学习小数加减法,能使学生体会小数加减计算对人类活动的重大意义,体会数学的工具性作用。同时激发学生学习小数加减法的兴趣,涌动长大也要为国争光的豪情,提高学习的主动性和自觉性。
(2)小数加减运算集中编排。
小数加减法的计算方法基本相同;计算的重点、难点都集中在小数点的处理问题上;计算的结果都要考虑是否要用小数的基本性质使之变成最简。基于以上原因,所以把小数加减法放在同一个例题(例1)中进行教学。这样既突出了知识之间的有机联系,又节省了教学时间,使学生能以较快的速度形成小数加减的良好认知结构。
(3)为学生提供自主探索小数加减笔算方法和解决问题多种策略的空间。
小数加减法与整数加减法在算理上是相通的。对于小数加减法,学生有似曾相识的感觉。教材紧紧抓住学生的这一认知特点,有意不给出小数加减法的计算过程,不概括小数的加减法法则,而是刻意引导学生利用已掌握的整数加减法的旧知迁移到小数加减法这一新的情境中。如例1、例2中,让学生自主探索小数加减法的竖式写法,经历计算的全过程,同时经过合作交流,共同总结笔算的一般方法,理解“数位对齐”就是“小数点对齐”的道理,知道当计算结果的末尾有0时,应根据小数的基本性质省略0不写,使结果形式达到最简。又如,例3中的小数加减混合运算,出示了解题的三种不同思路,为学生用不同的方法解决同一问题作了积极的引导。
(4)情境呈现方式故事性强,灵活多样。
本单元的教学内容看似枯燥,但由于创设了故事性强,灵活多样的呈现方式,使小数的加减运算变得具有磁铁般的吸引力,使学生在解答用小数计算的实际问题时,能始终带着饱满的热情思考解决问题的不同方案,掌握小数运算的基本方法。如,例1,父子看雅典奥运会女子10米跳台双人跳水比赛,边看边计算成绩,形如场外裁判;例3,一家三口看环城自行车赛,边看边用自己的方式计算运动员还要骑的路程,有一种为运动员着急、鼓励运动员快速、顺利抵达终点的关爱情怀;例4,两位学生推测校运动会中本班4×100米接力赛的成绩,体现对班集体的热爱之情。从例1~例4,教材均用学生感兴趣的图片、表格以及图文相结合的形式,呈现学习内容。这些措施改变了以往小数计算中比较单一、严肃的学习面孔,使鲜活的体育活动和看似机械演练的小数运算融为一体,使计算、推理、概括这些抽象的数学活动变得令学生乐于接纳、乐于探究。
教学建议
1.选择近期对学生有较大影响的活动来学习小数加减法。
现实生活中,蕴含着小数加减计算的活动大量存在,这些活动中,哪些是在近期对学生影响较大的?是学生感兴趣的?这是我们选择素材的一条基本思路。因此,教学时,既可根据教材提供的运动场上的信息,特别是雅典奥运会中的一些运动项目为素材,也可根据当地生活、生产实际,如家庭用水、用电、用煤气的数量与价钱;农家各项农产品的产量、收入;购买有关生活、学习用品的价钱等等,都可作为学生学习小数加减法的素材,通过结合学生熟悉的生活来学习,使学生获得积极的情感体验。
2.鼓励学生自主学习小数加减法知识。
小数加减法和整数加减法,两者之间有着割不断的联系和相同之处。整数加减法的计算方法,学生在第一学段的三年级时就已经掌握了。因此,让学生充分应用旧知来自主学习小数的加减法成为本单元教学的一个重要策略。教学时,教师的职责是:帮助学生激活整数加减法的计算方法这一已有知识经验,并尝试用它来计算小数加减法;让学生明确列竖式时应如何对齐数位,懂得道理何在;学会用自己的语言表述自主尝试的过程和结果。通过自主学习本单元的知识,使学生懂得应用旧知来学习新知是获取知识的一条重要途径。
3.提倡解题策略的多样化。
为了使因材施教、让每一个人都得到充分发展的理念落到实处,教学时应关注不同学生解答问题的不同思路,积极鼓励学生用自己的方式思考问题,提出自己的解法。如,教学例1中解答“第二轮动作完成后*队领先多少分”的问题时,教师不宜作任何提示,而应让学生根据自身经验找到适当的解题方法。又如,教学例3、例4时,不必将教材中出现的各种解题思路率先呈现给学生,而是让学生在独立思考、自主解答的基础上,通过合作交流,领会多种不同的解题思路,感受解题策略的多样性和灵活性,达到提高数学思考能力和计算能力的目的。
4.引导学生逐步形成从现实情境中发现并提出问题的良好习惯。
数学课程目标之一,是培养学生解决问题的能力。培养学生解决问题能力的途径之一,就是使学生形成不断发现问题、提出问题的良好习惯。教学时,应引导学生充分利用教材提供的丰富素材,根据素材给出的若干信息去发现隐含在信息中的若干数学问题。如,例1显示的是父子二人观看女子双人跳水比赛的情境,当记分牌逐一显示*和加拿大运动员第一轮及第二轮动作完成后的得分情况时,引导学生思考:“根据第一轮动作的得分情况,你能提出什么问题?第二轮呢?”又如,教学例4时,当学生看到表格呈现4位学生“50米跑的成绩”时,引导他们发问:“看到这张表格,你能提出什么数学问题?”这样经常性地引导学生对教学中的若干信息发问,天长日久,学生就能养成面对周围世界的诸多现象不断发问的良好习惯。
5.这部分内容可用6课时进行教学。
(三)具体内容的说明和教学建议
1.主题图
编写意图
(1)选择对学生有感染力的体育运动为背景。
呈现2004年雅典奥运会上*跳水运动员劳丽诗、李婷在女子10米跳台双人跳水比赛中的完美的空中动作照片,以及该项目中金、银、铜牌得主的跳水成绩。通过观察照片,让学生回味雅典奥运会中我国运动员创造的辉煌成绩,使学生体会一种自豪、一种激励,体会人类运动技巧给世界带来的无限风光。
(2)选择与小数计算紧密联系的运动项目为素材。
奥运会中,许多项目的成绩是通过小数计算来决定的。教材选择女子10米跳台双人跳水这一项目,是因为这项比赛过程的成绩计算就是小数加减计算(两位小数)的内容,而我国奥运健儿在此项目中荣获金牌。这样选择,既让学生学习了小数加减法,又使爱国主义教育润物无声。
教学建议
(1)以人类崇尚的体育运动为背景,学习小数加减法。
教学时,除显示主题图,还可充分利用现代信息技术手段显示雅典奥运会中我国运动员获其他项目金牌的图片,以及用小数记录他们获奖成绩的情境,由此引入小数加减法的学习。也可在此基础上,选用本校、本市*会中的内容(图片、用小数记录的各项成绩)作为小数加减法的.学习素材。
(2)引导学生自主说出主题图下面表格的内容。
教学主题图下的表格时,可让学生说一说:①表头分了哪三类?(国家、运动员、奖牌)②金、银、铜牌的得主各是哪几个国家的运动员?③从中你想了解什么问题?学生可能会提出:我国运动员的决赛成绩比加拿大的高多少分?比俄罗斯的高多少分?……根据学生的提问,引入小数加减法的学习。
2.例1。
编写意图
(1)由本单元主题图创设的情境引入小数加减法的学习。
通过父子二人观看2004年雅典奥运会中女子10米跳台双人决赛的全过程,自然而然地引入小数加减法。教材用表格呈现我国运动员和加拿大运动员在第一、第二轮动作后的得分情况,呈现父子二人在知道得分后兴高采烈的对话:“*队领先3.6分”、“*队两轮的总成绩是111.60分”、“现在领先12.6分”……父子二人的对话促使学生思考:“3.6分、111.60分、14.6分是怎么算出来的?”这样,为了解决这一个个的实际问题,小数加减运算便产生了。
(2)以故事形式动态呈现小数加减法。
与以往教材编写加减法的顺序不同,本例题是先学减法,再学加法,是以故事发展的先后顺序来编排的。由于要知道“第一轮动作后,*队领先多少分?”所以本例先安排小数减法的学习。接着,要知道“*队两轮的总成绩是多少?”所以再学习小数加法。这样安排,合乎情理,易于激发学生学习的热情和主动计算的兴趣。
(3)给学生提供自主计算与交流的空间。
两位小数的加减法如何笔算,教材没有给出详细过程,只有计算结果。如,竖式中的 “3.60、111.60”是怎样算出来的,教材没
有任何说明。它留给学生自主学习的探索空间,它刻意让学生经历自主列竖式、自主计算的全过程,它迫使学生应用已有的知识经验来解决新问题,通过自主探索或合作交流弄清“小数点对齐”的道理,弄清“得数的末尾如何去0简写”的道理。学生有了这一自主探索的经历,就多了一次自主获取知识的体验。
教学建议
(1)让学生自主阅读,表述题意。
本例题将故事、表格、数据、计算、思考融为一体,以学生喜爱的方式呈现出来。怎样让学生读懂这丰富的画面、理解其中的数学意义呢?一般的方法是让学生自主阅读。在自主阅读的基础上,再用自己的语言表述题意。如例1中上面一部内容,教学时应让学生有序的陈述自己理解的信息:①例题中的事情(父子二人观看2004年雅典奥运会跳水比赛);②表格的意思,特别说出我国和加拿大运动员在女子10米跳台双人决赛中第一轮得分的情况;③父子二人对话的内容。(父:*队领先3.6分,子:差距还不到4分。)
(2)设计让学生自主计算的教学过程,突出算理和算法。
由于学生已有整数加减计算的基础,教学时,应充分利用学生已有的这一知识经验,设计好让学生自主提问、自主计算、合作交流的过程。
①先教学减法。出示例1中上面一部分内容时,不出现小数减法的竖式,而是让学生根据表中的两个数据发问:“*队领先多少分?”或者根据父子二人的对话“*队领先3.6分”提出问题:“这3.6分是怎么得来的?”为了解决这一问题,引入小数减法,同时让学生自主列竖式计算。学生计算后,应引导说一说:
●如何列竖式?(突出小数点对齐的道理。)
●如何计算?(突出退位的过程。)
●竖式中的结果3.60与图中父亲说的“3.6”有区别吗?(突出根据小数的基本性质将结果简化。)
②再教学加法,并体现解题策略的多样性。
例1中下面一部分内容的情境是上面一部分的继续,是故事往下发展的一个过程。教学时,同样不要出现加、减法竖式,而是引导学生根据表中数据或父子二人对话的内容提出数学问题:“111.6分和12.6分是怎么得来的?”然后让学生独立列竖式计算。计算后,让学生说一说:
●怎样求*队两轮的总成绩?(用加法笔算)计算的结果“111.60”还可以怎样写?为什么?
●要求*队第二轮后领先多少分,怎么解答?
学生中会有不同的解答方法。如:
方法一:53.40 +58.20=111.60
49.80 +49.20=99
111.60 - 99=12.60
方法二:53.40-49.80=3.6(利用前面的结果)
58.20-49.20=9
3.6+9=12.6
应引导学生进行交流,体会解题策略的多样性和简洁性。显然,方法二从计算数据来看,更简单,且充分应用了已获取的相关条件(3?6)。
●对比两种解法的结果:12?60与12?6,突出小数的基本性质的应用。
3.例2及“做一做”。
编写意图
(1)让学生在合作活动中总结小数加减计算的一般方法。
小数加减计算应注意的问题不要求学生记忆,只要理解就行,教材组织学生应用交流的方式,共同总结出小数加减计算的一般方法。通过交流,理解小数点对齐就是使相同数位上的数相加减;理解如果得数的末尾有0,就应根据小数的基本性质将0去掉,使小数的书写简洁。
(2)通过“做一做”的练习,使学生进一步体会小数加减法在生活中的广泛应用,进一步巩固小数加减法的计算,同时会用不同的方法,包括使用计算器进行小数加减法的计算和验算。
教学建议
(1)引导学生逐步有序的总结出小数加减法要注意的问题。
总结时,采用合作交流的方法,分两步进行:①先让学生根据例1中各竖式的计算过程和结果说一说计算时应注意什么。这时,学生总结是凌乱的,不完整的。②在学生自由总结的基础上,引导学生有序地回忆自己在进行小数计算时先干了什么(列竖式);列竖式时应注意什么(小数点对齐);对于计算的结果,当小数末尾有0时,是怎么处理的(去掉末尾的0)。这样,不但帮助学生总结了小数加减法的一般方法,而且使学生懂得总结、概括的一般方法。
(2)提醒学生用不同的方法对计算结果进行验算。
两位小数加减法,计算容易出错。为保证结果的准确性,应提醒学生用不同的方法检验。除根据算式中各部分之间的关系来检验,还应鼓励学生用计算器进行检验,帮助提高使用计算工具的能力。
(3)“做一做”中的第1题是人人都必须完成的基本练习,应要求学生用一定的方法进行验算,能对自己的计算结果作出正确与否的评判。
(4)“做一做”中的第2题突出计数器在小数计算中的工具性作用。学生作业时,可提出要求:先用笔算,再用计算器验算。
4.关于练习十六中一些习题的说明和教学建议。
第1题,是小数口算练习,它综合了两方面的知识:100以内加减法的口算和相同数位上的数才能相加减的算理。学生计算如果出错,主要原因有二:一是粗枝大叶、计算不专心造成的,如看错数据,手写的与口算的内容不一致等;二是由于100以内的口算不过关或算理不清楚造成的。这时,应及时帮助学生查找其中原因,及时纠正错误。
第2、5题,是小数加减的笔算练习。应要求学生:(1)将笔算竖式尽可能写得漂亮些;(2)仔细计算;(3)自觉验算,知道如何判断自己计算的正误。
第3、4题,是小数计算在实际生活中的应用。第3题可改成让学生自主提问的方式:看到表中的数据,你能提出什么数学问题?将小数的计算与实际生活联系起来,使学生感受到小数计算在日常生活中的应用。第4题通过计算电话费和上网费,使学生对复式统计表有进一步的认识。
第6题,结合人民币、质量单位和长度单位进行小数计算。这样的计算在现实生活中用得极为普遍。学生计算时,应作如下提示:①想清楚不同计量单位之间的进率;②计算时,可先将复名数改写成小数,然后再计算;③用不同的方法进行检验。
第7、8题,是与体育运动相关的练习。第7题通过购买足球和排球,使学生体会组合的思想方法,体会解题策略的多样性。第8题有着良好的教育功能,一方面使学生了解一些体育方面的信息:某些女子田径项目的*纪录和世界纪录;另一方面通过计算这些女子田径项目的*纪录和世界纪录的差距,体会我国要赶超世界一流水*,还须付出更大的努力。
5.例3。
编写意图
(1)以学生的家庭生活(观看环城自行车赛)为背景学习小数加减混合运算。
本例创设的学习情境类似例1,它来源于学生的家庭生活。通过观看环城自行车赛,了解自行车比赛的一些知识。知道在长达数天的比赛过程中,运动员和观众都会随时计算已完成的赛段里程和未完成的赛段里程,这就引入了小数的加减混合运算。这一情境的创设使学生体会小数加减混合运算是随比赛的进程而产生的,是因解决问题的需要而产生的。
(2)鼓励学生用不同的思路解决问题。
要解决“完成比赛,自行车运动员还要骑多少千米”的问题,教材呈现了三种不同的解题思路,尽管这三种思路的思维水*处于同一个层面,但它显现的意义是让学生体会生活中许多问题的解答往往都有多种思路,多条途径。当思维的角度不同时,就会产生不同的解答方法。
(3)形成良好的家庭学习氛围。
学习型家庭是学习型社会的基础。本例通过一家三口计算自行车运动员未完成的里程数,塑造了一个热爱学习的家庭榜样。通过本例的学习,使学生不但会进行小数加减混合运算,同时也让学生产生和爸爸妈妈共同学习的向上愿望,让每个家庭都有一个良好的学习氛围。
教学建议
(1)继续让学生自主阅读题意。
与例1的学习类似,先让学生自读题意,再用自己的话表述出来。尽可能创设让学生表述的空间,如同桌互说、自愿上台说。通过这些活动,逐步培养学生的语言表达能力。
(2)分步骤呈现例3。
①可利用课件或教学挂图先出示例3的上面一部分,即问题部分。在学生理解了题意后,让他们自主解答“完成比赛,自行车运动员还要骑多少千米?”
②在学生自主解答的基础上,再出示例3的下面一部分。先交流各自的解题方法,请不同解法的学生上台自己书写解题算式,自己向全体学生解说自己的想法。再组织学生认真观察三个不同的综合算式,从中发现算式483.4-(39.5+98.8)与算式483.4-39.5-98.8是相等的。
(3)使学生懂得使用计算器进行稍复杂的小数加减混合计算。
让学生用计算器对自己列的算式算一遍,一方面检验自己笔算的结果,另一方面熟练使用计算器的方法。
6.关于练习十七中一些习题的教学说明和教学建议。
第1题,是经常要进行的口算练习。练习时,既要引导学生用常规方法口算,更要引导学生注意方法的合理性和灵活性,使口算也能成为培养学生能力的一个载体。如,口算“7.1-3.5”时,可以这样口算: 7-3.5+0.1,也可以这样口算,“7.1-3-0.5”。它灵活应用了题中数据的特点,使口算不但算得正确,而且灵活。
第2题,是小数加减混合运算的另一种表示方式,用这种方式呈现,一方面体现了加减混合运算的过程,避免了老面孔带来的单调感,可提高学生计算的乐趣;另一方面,这种方式还渗透了函数思想。如,当一个加数不变(5.47),另一个加数变化时,和也要发生变化;减数不变(9.86),被减数变化时,差也要发生变化。
第5、6题,都是小数加减混合运算。呈现的方式和要求略有不同。第5题不带括号,只须按从左到右的顺序算;第6题中带有括号,须先算括号里面的,再算括号外面的,算完后还要验算。练习时,应提醒学生看清算式再计算。
第3、4、7、8题,都是需要用小数加减混合运算来解决实际问题的练习。每题解答后,都应鼓励学生用计算器进行验算。
第9题,是突出小数与十进分数之间的联系,要求学生先将分母为10,100的分数改写成小数,再进行计算。
第10题,突出计算器的工具性作用,通过练习,使学生体会用计算器计算日常“流水”账,十分准确、方便、省时。
第103页的思考题,可让多数学生参与练习。应引导学生先画示意图表示题意(如图),然后根据数据特点用简便方法计算。
物体在下落前距地面的高度为:
4.9+(4.9+9.8)+(4.9+9.8+9.8)+(4.9+9.8+9.8+9.8)
=4×4.9+6×9.8(或8×9.8)(尽管这时学生还未学小数乘法,但用计算器可以计算。)
=78.4(米)
7.例4及“做一做”。
编写意图
(1)以校园体育运动为背景,学习加法运算定律在小数加法中的应用。
学校体育运动是校园生活的一个重要组成部分。用数学来描述、记录运动员的成绩是学生熟知的。本例以某班四位同学参加4×50米接力赛为内容,以这四位同学50米跑的成绩为素材,引入加法运算定律在小数加法中的应用,显得十分自然。
(2)在不同算法的比较中体会运算定律在运算中的简化作用。
教材采用对比的方式呈现小莉和小红两位同学不同的计算思路,通过对比,使学生看出两种算法的结果是一样的。从而直观感知加法的运算定律在小数运算中同样适用。并进一步体会用加法的运算定律进行计算确实方便又快捷,使学生在今后的小数加法运算中,能根据数据特点自觉地应用加法运算定律进行简算。
教学建议
(1)为了让学生理解加法运算定律在小数中仍然适用,除教材提供的例4外,还可以补充一些例子。如,计算3.56+1.60+2.44和1.60+(3.56+2.44)两个式子,说一说你发现了什么?通过让学生计算2~3组这样的式题,使学生体会加法的运算定律推广到小数后仍然适用。这个过程,使用了不完全归纳推理的方法,让学生感受了不完全归纳推理的合理性。
(2)尊重学生的个性差异,鼓励学生用不同的方法进行计算。
关于本例的计算,学生中有多种不同的方法。教学时,应给学生一定的独立计算时间,让学生能充分展示个性化的计算思路。如,有的学生根据4个加数中的整数部分相同的特点,这样计算:
8.42+8.46+8.54+8.58
=8×4+(0.42+0.58)+(0.46+0.54)
=32+1+1
=34
上述算法中,既有加法的运算定律的应用,也有根据数据特点将加法转换成乘法,使计算更加简便。教师对这些能综合应用所学知识进行简算的学生要给予鼓励和适当的评价,使计算不仅仅是一种技能,而是上升为一种技巧。
(3)“做一做”中第1题的填空是让学生进一步熟悉加法运算定律的练习。练习时,应关注学习有困难的学生,使他们通过这组填空题的练习,真正掌握加法运算定律的内涵。
第2题中的简算有的要用到加法的运算定律,有的要用到减法的运算性质,如计算5.17-1.8-3.2,就要用到减法的运算性质。练习时,须提醒学生认真审题,思考清楚了再下笔。
8.关于练习十八中一些习题的说明和教学建议。
第2题,是应用加法运算定律进行简算的练习。练习时,应让学生写出简算步骤,并说明理由。如,计算“1.29+3.7+0.71+6.3”,其过程如下:
1.29+3.7+0.71+6.3
=(1.29+0.71)+(3.7+6.3)(加法交换律和结合律)
=2+10
=12
第3题,是培养学生自觉应用运算定律或运算性质进行简算的练习。练习时,要求学生按序如下操作:①认真审题,根据题中数据特点作出判断,看看能否简算;②若能简算,则想清楚是利用加法的运算定律还是利用减法的运算性质进行简算;③写出简算过程。
第4、5题,是加法运算定律在解决实际问题中的应用。
第4题的练习背景和计算方法是例题4的继续。练习时应注意两点:①表中最后一栏“可能的总成绩”表示的意思应让学生自己解释。在明确所求问题的情况下再进行计算;②由于本题中所有小数的整数部分都相同,可提示学生根据数据特点综合应用多种方法进行简算。
第5题,练习的素材来自生活中常用的购物发票。通过模拟售货员计算购物的总价和交易找零的余款,使学生学会看懂发票的内容,理解发票的作用,提高生活适应能力。练习时,先让学生想一想发票中的方框里要填什么,怎样列式,然后再动手做。做完后再用计算器检验。
第7、8题,是培养学生“能从现实生活中发现并提出简单的数学问题”的练习。第7题以我国20年来(1978~1998年)城镇及农村人均居住面积的变化为素材,引发学生提出相关的数学问题。在解决这些简单的问题中,教师一方面应引导学生充分应用已有知识进行计算,体现算法的多样化,另一方面又应为后续学习小数的乘除法做好准备。如,当学生提出的问题是“1998年城镇人均居住面积是1978年的几倍”时,学生的解法可能有如下几种:
(1)9.3÷3.6≈2.5(多数学生不会笔算,只能用计算器算。)
(2)3.6+3.6=7.2(1998年城镇人均居住面积大约是1978的2倍多一些)
(3)9.3-(3.6+3.6)=2.1(大约是2.5倍)
对于上述第(1)种解法,可引导学生思考:除数是小数的除法能否变成除数是整数的除法进行计算呢?给学生充分的时间和空间进行合作探讨,为后续学习做好铺垫。
第8题,开阔了学生的视野,使学生通过计算了解到关于世界人口情况方面的信息。练习时,可充分利用丰富的网上资源,让学生知道地球最多能养活多少人口,从而体会控制人口增长是人类生存的一个重大策略。
第9题,是例1的继续。通过计算三个国家运动员5轮跳水的总成绩,进一步促进学生养成简算的良好习惯,使学生进一步体会运算定律在解决实际问题中确实有着广泛的作用。练习时,可采用比赛的方式,看看谁算得又对又快,真正掌握“对、快”的一般方法。
(四)参考教案
课题:整数运算定律推广到小数
教学内容:教科书104页例4及“做一做”、练习十八第1~3题、第7题。
教学目标:
1.通过有限个例证使学生理解整数的运算定律在小数运算中同样适用。
2.能根据数据特点正确应用加法的运算定律进行简便运算。
教具、学具准备:把练习十八第4题制成课件。
教学过程:
一、情境导入
课件显示育才小学春季运动会的场景,伴随声音响起:下一个项目是四年级组男子4×50米接力赛,请四年级各班做好准备。画面分别出示四年级4个班运动员50米成绩的情况表:(练习十八第4题,将(1)班与(4)班的成绩对换了。)
提问:根据这张表提供的信息,请你猜一猜,哪个班可能得冠军?四(1)班可能得第几呢?
二、经历用加法运算定律进行简算的过程,理解加法运算定律在小数运算中仍然适用
1.在交流中感受算法的多样化。
师:“请你用自己的方法先算一算四(1)班的总成绩,看谁算得又对又快。”
每个学生自主计算,教师巡视,及时发现学生中的不同算法。在多数学生都完成的情况下,请不同算法的学生上台写出自己的计算过程(或用实物投影仪展示不同算法的计算过程),并说明理由。学生的算法可能有以下三种:
①8.48+8.54+8.52+8.46
=17.02+8.52+8.46
=25.54+8.46
=34(秒)
②8.48+8.54+8.52+8.46
=(8.48+8.52)+(8.54+8.46)
=17+17
=34(秒)
③8.48+8.54+8.52+8.46
=8×4+(0.48+0.52)+(0.54+0.46)
=32+1+1
=34(秒)
2.在对比中感知较优的算法。
师:上述三种算法中,你认为哪一种较优?为什么?
引导学生先自己思考,自言自语或轻声说出较优算法的理由,然后在班上交流。让多数学生在交流中感受较优算法的依据有二:①应用了加法的运算定律;②根据数据特点将加法变成乘法。
3.推出加法运算定律在小数运算中同样适用。
师:你能用简便方法算出四(2)、四(3)、四(4)班的总成绩吗?算完后,用计算器验证你的结果,并预测冠军是哪个班,四(1)班可能得第几。
(1)要求每位学生先用较优的方法写出简算过程,并说明理由。然后集体反馈:
四(2)班:
8.40+8.56+8.61+8.39
=8.40+8.56+(8.61+8.39)或=8×4+0.40+0.56+(0.61+0.39)
=8.40+8.56+17 =32+0.40+0.56+1
=33.96 =33.96
四(3)班、四(4)班成绩分别是34?06秒、34?17秒(过程略)。
(2)全班学生用计算器验证上述结果。验证后将4个小数排队:
33.96<34<34.06<34.17,估测出冠军可能是四(2)班,四(1)班可能是第二名。
(3)师:“通过上面4次简便计算,你认为加法运算定律在小数运算中适用吗?你能否再举1~2个例子说明。”
学生举例说明。请1~2名同学将所举例子写在黑板上,全班交流、评判。通过多个有限的简算实例,帮助学生合情推出“加法运算定律在小数运算中仍然适用”。
(4)小结:请学生翻开教科书104页,说明例4就是今天学习的内容。然后引导小结,请学生默读并理解例4下面的一段话:“整数的运算定律在小数运算中同样适用。”
三、用加法运算定律进行简算
1. 基本练习。
自主完成“做一做”第1、2题,要求学生在每一题的后面写上简算的理由,做完后及时反馈。
2.综合练习。
(1)用竞赛的方法完成练习十八第1题。对于口算错误较多的学生,应帮助其分析原因,及时更正。
(2)自主完成练习十八第2、3题(第3题也可以在课外做)。提醒学生看清题目,弄清楚哪两个数合并能凑整,再应用运算定律进行简算。
(3)自主完成练习十八第7题。本题有两种不同的解题方案,一般学生只需做一种,对学有余力的学生可要求他们写出两种不同的解题方法。
3.提高练习。
计算:1+1.2+1.4+1.6+1.8+…+9.6+9.8+10
教学内容:第95~97页例1、2
教学目标:
1、使学生理解掌握小数加、减法的方法。
2、培养学生的计算能力。
3、培养学生细心检查的好习惯。
教学重点:计算方法。
教学难点:退位减法。
教学过程:
一、复习引入
1、准备题:先计算,再说说整数加、减法的意义和计算方法
754+38262000-493
2、引入:小数加法的意义与整数加法的意义相同,是把两个合并成一个数的运算,今天学习小数加法。
二、教授新课
1、创设情景:2004年雅典奥运会跳水比赛中,女子10米跳台双人决赛中,*的劳丽诗和李婷夺得冠军。
2、劳丽诗和李婷是如何夺得冠军的呢,现在我们就把当时的情景回放一下。
通过这个表,你得到了什么信息?
现在你又得到了什么信息?
小组合作:
(1)根据上面表格中的信息,你了解到了什么?
(2)你是怎样知道的,说说你的方法。
(3)你为什么这么计算,说说具体的计算过程。
汇报:重点是计算过程
3、小组尝试总结:小数加减法需要注意什么?
汇报:
(1)小数点对齐
(2)数位对齐
(3)得数的末尾有0,一般要把0去掉
注意:上面数据中并没有去掉0是为了统计分数的时候能够方便比较。
生活中还有的时候也不需要把0去掉,谁能举例?(价签上)
4、小结:计算小数加、减法,先把各数的小数点对齐,再按照整数加减法的法则进行计算。得数里的小数点,要和横线上的小数点对齐。得数的小数部分末尾有0一般要把0去掉。
三、复习巩固:
1、口算下面各题:
0.7+0.94.7-0.50.56-0.451.2+0.81-0.4
0.39+0.157.7+0.63.6-0.84.8-31.7-0.3
2、算一算:
10.52+3.4815.24-3.849.9+10.11100-0.27
3、培红小学师生自己粉刷墙壁,节约了1118.32元;自己修桌椅,又节约了120.8元。一共节约了多少元?
4、一箱钉子,连箱共重52.5千克,箱重2.5千克,钉子净重多少千克?
四、总结:今天我们复习了什么内容?要注意什么?
板书设计:
小数加减法
小数加减法的方法:(略)
课后小结:
——小学四年级数学《小数的意义》教学教案 (菁选2篇)
教学目标:
1.知识与技能:结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义。
2.过程与方法:经历探索小数意义的过程,了解小数在生活中的广泛应用。
3.情感目标:在探索交流的学习过程中,体验数学学习的乐趣。
教学重点:
理解小数的意义。
教具准备:
长方形、正方形的图片,多媒体课件等。
教法学法:
根据课程标准和教材内容,我将采用启发式教学法引导学生主动地进行观察、实验、猜测、验证、推理与交流。
教学学法:
动手实践、自主探索与合作交流成为学生学习的主要方式,促进学生的个性发展和能力提升。
教学过程:
为达成以上目标,突出重点,突破难点,我设计以下五个教学环节。
一、创设情境,提供素材。
这一环节分两步,第一步观察情境,读写小数。
课件出示信息窗,引导学生观察,并提问:从图中你了解了哪些数学信息?学生观察图片,说出各种鸟蛋的质量,接着追问:你是怎样读写这些小数的?学生试着读写小数。教师随时订正学生读写小数的方法。因为学生已经学习过一位小数的读写方法,在此不必做过多讲解,放手让学生在读写的过程中总结出小数的读写方法,完成知识的迁移。
第二步根据信息,提出问题。
提问:根据这些信息,你能提出什么问题?学生可能提出:0.25千克中的0.25表示什么意思?0.365千克中的0.365表示什么意思?本环节的设计意图是创设问题情境,激发学生提出问题的兴趣。
二、分析素材,理解概念。
这一环节分 两步,第一步认识两位小数的意义。
这一步分四个小环节,第1个小环节,首先引导学生选择需要解决的问题;要解决0.25表示什么意思,首先要弄清0.01表示什么?(板书0.25 0.01)
第2个小环节,出示一张正方形纸片【提问】:如果正方形纸片用“1”表示,那么把它*均分成10份,每份可以怎样表示?如果把它*均分成100份。每份可以怎样表示?
先请同学回答,学生应该知道0.1与1/10的关系,再让学生慢慢过渡到0.01与1/100的关系。
(师板书:0.1——1/10 0.01——1/100)
在正方形纸片上表示出0.25。
提问:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?
先让学生小组讨论,然后小组合作完成,全班交流。
教师引导学生明确0.25就是25/100,也就是25个1/100。
板书:0.25 25/100
第3个小环节,多媒体出示0.05、0.10的方格图,阴影部分表示什么? 板书:0.05 5/100 0.10 10/100
第4个小环节,小组讨论:这些小数有什么共同特点?
让学生先小组交流,请不同的同学说出自己想法,再进行全班交流。
引导学生概括出两位小数表示的意义。
【设计意图】学生已经知道一个小数的意义,我们通过对一位小数意义的复习,过渡到对两位小数意义的学习,让学生在探索新知识的时候将数学知识串联起来。 第二步,认识三位小数的意义。
这一步分四个小步,第一个小步【提问】:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?
直接让学生口答,学生在两位小数的启发下,可以自然迁移到三位小数。
第二小步,教师多媒体出示大正方体塑料块动态*均分产生0.365的过程,引导学生理解0.365就是365个1/1000,也就是365/1000。
第三小步,多媒体出示0.305、0.360的.阴影方块图,阴影部分表示什么? 请同学们看着多媒体的方块图数一数。
第四小步,引导学生概括出三位小数表示的意义。
【设计意图】学生在复习一位小数意义,学习二位小数意义之后,可以通过自学,自己探索发现三位小数的意义,这利于学生归纳,探究能力的发展。
三、借助素材,总结概念
【提问】:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?
学生寻找生活中的小数,并结合实际说出它们的意义。集体交流,师引导学生总结出小数的意义。从而知道:像0.1 、0.25 0.365这样表示十分之几、百分之几、千分之几的数,叫做小数。(并出示课题:小数的意义。)
【设计意图】通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。 第四个环节,巩固拓展,应用概念
我设计两个层次的练习,第一个“自主练习1”,这是练习十进分数与小数的关系,进一步理解小数的意义,通过完成练习,了解学生对小数意义的理解情况。
第二个是“自主练习2”,借助学具巩固小数的意义,学生用不同的方法表示出每个小数的意义,关注学生对小数意义的掌握情况。
【设计意图】自主练习题的设计,是为了让学生巩固今天所学的内容,将新学习的知识点都适当的安排习题,可以检测学生当堂学习的效果。
四、课堂总结
谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?
[设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学*结了经验和方法。
为直观,简单,适合全班同学完成。
自主练习12题
这是思考题,对今天学习知识的实际应用,可以让感兴趣的同学进行练习。
教学目标:
1、经历观察、测量、猜想等学习活动,感受、体验小数产生于生活,感受生活中处处都存在小数;
2、理解小数的意义,能说出小数各部分的名称,掌握小数的读、写方法,并正确能读写小数;
3、在合作与交流中的过程中,感受数学学习的乐趣。
教学教法:
教学方法是教学过程中师生双方为完成目标而采取的活动方式的组合。根据本课教学内容的特点和学生的思维特点,我选择了尝试法、引导发现法、等方法的优化组合。引导他们去发现问题、分析问题、解决问题、获取知识,从而达到训练思维、培养能力的目的。小数的含义是属概念教学,较为抽象、凝炼,根据学生对概念的认知,一般遵循:感知——表象——抽象概括——形成概念的这一规律。
1、从生活中了解小数,明确要用小数表示的必要性。
2、从已有的生活经验中,理解、抽象小数的意义。
3、 通过观察、测量,让学生充分感受、体验小数产生于生活,从而使学生感受生活中处处都存在小数 。
4、了解小数在生活中的普遍存在及广泛运用,体验数学在身边,感受数学学习的价值和乐趣。
教学学法:
1、学会通过观察、测量、归纳,可以发现生活中处处都存在小数 。
2、引导学生自主探究,培养他们用已有知识解决新问题的能力。
3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。
教学过程:
一、创设情景 导入新课
创设“5.1”假期情景 ,使本课内容与学生的现实生活经念相吻合
1、在假期里你买了什么物品?花了多少钱?
2、老师买了一本书,同学们猜一猜要多少元?
从同学们的回答中归纳出不能用整元数表示的这种数,要用小数表示。引入课题。
这样的设计,旨在把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知的火花,从而进入的学习状态,为主动探究新知识聚集动力。
二、明确目标 探索新知
同学们都知道小数就在我们的生活中存在,那么同学们想了解小数的什么?
我预设学生的提问(预设)
1、小数是怎么来的。(怎么产生的)
2、什么叫小数?(小数的意义)
3、小数是怎么读的,怎么写的?
根据学生提的问题,师生分析问题
1、师生小结小数的意义
(1)象“0.1、0.3、0.9”这些小数叫1位小数。(分母是10的分数,可以写成1位小数。1位小数表示十分之几。)
(2)象“0.01、0.04、0.18”这些小数叫2位小数。(分母是100的分数,可以写成2位小数。2位小数表示百分之几。)
(3)象“0.001、0.015、0.219”这些小数叫3位小数。(分母是1000的分数,可以写成3位小数。3位小数表示千分之几。)
2、学习小数的写法
三、巩固新知
1、练习“考考你”;(练一练)第1题
2、用米做单位测量同桌的高度;
3、菜市场买菜统计表。
【把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣】
四、小结
1、了解小数的历史。(小资料)
【了解小数的历史,激发学生的爱国热情。】
2、学了小数这节课,能谈谈你知道了些什么吗?
五、作业布置
1、从生活中记录一些小数,明天同学之间相互交流;
2、完成《作业本》
布置实践性的作业,使学生把小数在实际生活中的运用结合起来,体验教学就在身边,感受数学学习的乐趣。