• 首页
  • 工作总结
  • 工作计划
  • 心得体会
  • 述职报告
  • 思想汇报
  • 事迹材料
  • 疫情防控
  • 工作要点
  • 策划方案
  • 范文大全
    • 当前位置:首页 > 范文大全 > 教案设计 >
    • 鸡兔同笼教案合集八篇
    • 发布时间:2023-02-09 15:40:10 | 来源:网友投稿
    • 鸡兔同笼教案八篇  作为一名专为他人授业解惑的人民教师,通常需要用到教案来辅助教学,教案是教材及大纲与课堂教学的纽带和桥梁。那么写教案需要注意哪些问题呢?下面是小编精心整理的鸡兔同笼教案8篇,欢下面是小编为大家整理的鸡兔同笼教案合集八篇,供大家参考。

      鸡兔同笼教案合集八篇

      鸡兔同笼教案合集八篇

        作为一名专为他人授业解惑的人民教师,通常需要用到教案来辅助教学,教案是教材及大纲与课堂教学的纽带和桥梁。那么写教案需要注意哪些问题呢?下面是小编精心整理的鸡兔同笼教案8篇,欢迎大家分享。

      鸡兔同笼教案 篇1

        预设:

        学生1:列表法能很清晰地解决这个问题。

        学生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。

        教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。

        学生小组交流汇报。

        预设:

        学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。

        学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。

        【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。

        4.数形结合理解假设法。

        教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。

        (1)假设全是鸡。

        教师:我们先看表格中左起的第一列,8和0是什么意思?

        8×4=32(只)。(如果把鸡全看成兔,一共就有8×4=32只脚。)

        32-26=6(只)。(把鸡当成兔来算,2只脚的鸡当成4只脚的兔算,每只鸡就多了2只脚,6只脚是多算了鸡的脚数。)

        4-2=2(只)。(假设全是兔,就是把2只脚的鸡当成4只脚的兔。所以4-2表示一只鸡当成一只兔,多算了2只脚。)

        6÷2=3(只)鸡。(那要把多少只鸡当成兔来算,就会多算6只脚呢?就看6里面有几个2,也就是把几只鸡当成了兔来算,所以6÷2=3就是现在鸡的只数了。)

        8-3=5(只)兔。(用鸡兔的总只数减去鸡的只数就是兔的只数,8-3=5只兔。)

        (3)提出假设法概念。

        刚才我们通过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的一般方法。

        (板书:假设法)

        【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,可以让学生更加直观地感受假设法的优越性。

        (三)知识运用

        学生独立完成古代趣题。

        【设计意图】运用已学的技能去解决古代“鸡兔同笼”问题,创设课堂教学文化氛围,提高学生探究数学的热情。

        (四)全课小结

        这节课我们一起用列表法和假设法研究了古代著名的“鸡兔同笼”问题。你学会了吗?

      鸡兔同笼教案 篇2

        教学目标:

        1、在“鸡兔同笼”的活动中,经历自主探索、合作交流的过程,体会列表举例、作图分析等解决问题的不同策略。

        2、能解决有关“鸡兔同笼”鸡与兔的数量问题及其相类似的数学问题,提高解决实际问题的能力。

        3、在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。

        教学重点:

        能解决“鸡兔同笼”鸡与兔的数量问题及与其相类似的数学问题。

        教学难点:

        能用不同的策略解决相关的实际问题。

        教学关键:引导学生学会用假设、举例、列表、作图等方法解决问题。

        教具:多媒体课件

        教学过程:

        一、联系现实,激趣导入

        1、师:同学们,你们喜欢歌谣吗?老师这里有一首歌谣,大家一起读一读。

        生:一只鸡一个头,两条腿,一只兔子,一个头,四条腿;

        师:接下来的歌谣不完整,谁能把它填完整呢?

        两只鸡 个头, 条腿,两只兔子, 个头, 条腿,三只鸡三只兔子一共 个头, 条腿...…

        师:你是怎么知道的?

        生:我把兔子的腿数乘兔子的只数然后加上鸡的腿数乘鸡的只数。

        [设计意图:从学生们非常感兴趣的话题入手,让学生读歌谣、填歌谣,能深深吸引学生的积极性和探索欲望。]

        2.这节课,我们就一起来研究有关“鸡兔同笼”的问题。

        二、自主探索,尝试解决

        1、猜一猜:出示:鸡兔同笼,有20个头,那么鸡、兔各有多少只?

        (1)、指名读题

        (2)、理解题意:

        师:20个头表示什么?

        生:20个头表示鸡与兔的总头数。

        师:鸡与兔各有多少只?大家猜猜看?跟同桌说一说。

        (3)、同桌说一说:

        (4)、学生汇报,教师填表

        生1:我猜鸡有3只,兔子有17只。

        生2:我猜鸡有5只,兔子有15只。

        生3:我猜鸡有16只,兔子有4只。

        ……

        师:请同学们仔细观察一下表格,鸡的只数在变化,兔子的只数也在变化,什么没有变?

        生:鸡兔的总只数没有变。

        强调鸡兔的总只数不变

        [设计意图:通过这样的设计,目的是为了让学生猜测,引出对下边例题的思考,体现思维的灵活性。]

        2、自主探究

        出示:鸡兔同笼,有20个头,54条腿,那么鸡、兔各有多少只?

        (1)、指名读题

        (2)、引导观察:

        师:这两道题有什么不同呢?

        生:第2个问题多了一个条件“54条腿”

        (3)、理解题意:

        师:20个头,54条腿是什么意思呢?

        生:20个头表示鸡与兔的总只数。54条腿表示鸡与兔的总腿数。

        师:你想用什么方法来解决鸡兔各有多少只?请小组的同学一起讨论。讨论前老师提个小小的要求:

        ①、每个小组老师都有一份材料

        ②、小组长组织小组成员讨论,小组长并做好记录

        3、反馈交流,教师适当引导

        (1)、逐一列表法:

        生1:我先假设鸡1只,兔子19只,算出总腿数78条,接着假设鸡2只,兔子18只,算出总腿数76条……我一直算到鸡13只,兔子7只总腿数54条为止。

        师:像这样把每一种情况一一举例,直到寻找到所求的答案的方法,我们把它叫做逐一列表法。(板书:逐一列表法)谁还有不同的方法?

        (2)、跳跃列表法

        生2:我先假设鸡有1只,兔子有19只,算出总腿数78条,比题目的54条多很多。接着我就假设鸡有5只,兔子有15只,算出总腿数70条,还是多。我就假设鸡有10只,兔子有10只,算出总腿数60条,还是多。我再假设鸡有15只,兔子有5只,算出总腿数50条,比54条少,说明鸡的只数应在10与15之间。我再假设鸡有13只,兔子7只,算出总腿数54条。

        师:像这种“5只5只增减”,估计鸡与兔的可能范围,以减少列举的次数,我们把这种方法叫做跳跃列表法。(板书:跳跃列表法)还有其他方法吗?

        (3)、折中列表法

        生3:我先假设鸡有10只,兔子也是10只,算出总腿数60条,比54条多,我再假设鸡有12只,兔子8只,算出总腿数56条,还是多一点,所以我就假设鸡有13只,兔子有7只,算出总腿数54条。

        师:由于鸡与兔的只数共20只,所以各取10只,然后在举例中根据实际数据的情况确定举例的方向,这样可缩小举例的范围,这种方法叫做折中举例法。(板书:折中列表法)

        像同学们刚才的这几种解法,我们把它称为列表法。

        [设计意图:让学生小组讨论,尝试列表解决问题,调动每个学生的学习积极性,同时对列表的方法不做统一规定,让学生自由发挥,培养了学生的发散思维]

        4、画图法(板书:画图法)

        师:除了列表法,我们还可以通过画图来解决问题。先画20个圆圈表示20个头,再假设20只都是鸡,在每个圆的下面画2条竖线表示2条腿,总共画出40条腿,还剩下14条腿,刚好可以给7个圆各添上2条腿,所以兔子有7只,鸡有13只。

        5、归纳算法

        解决“鸡兔同笼”有多种方法,你喜欢哪种方法?

        三、巩固练习

        生活中有许多类似“鸡兔同笼”的数学问题,你会解答吗?

        (1)、出示:停车场上共停放12辆三轮车和自行车,两种车轮子总和为31个,三轮车和自行车各有几辆?

        (2)、学生独立解决,全班交流。

        [设计意图:通过学生的独立解决,旨在加深学生对鸡兔同笼问题的的理解。此外,不同层次的问题体现了不同学生的发展。也让学生体会到数学就在我们身边。]

        四、全课

        通过本节课的学习,你学会了什么?(板书:解决问题的不同策略)

        五、拓展延伸

        书P81“你知道吗?”

        师:我国古代数学名著《孙子算经》中就记载了“鸡兔同笼”的有关问题,可见古代劳动人民的智慧,我们为之感到骄傲和自豪。

        [设计意图:在教学时,对学生渗透爱国主义教育,激发学生努力学习数学热情,使他们感到学数学不是枯燥乏味的,而是风趣幽默的一门学科。]

        教学反思:

        反思本次教学活动,我发现了成功与遗憾共存。

        成功之处在于:

        1、在导入新课时我采用创设情境的方式导入,学生的积极性一下子就被调动起来了。让学生读歌谣、把歌谣补充完整,学生不仅觉得有趣,同时也复习了计算腿数的方法。

        2、新授时我让学生自主探索、尝试解决鸡兔同笼的问题,然后引导学生认识三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。由于学生的认知水*不同,我没有统一要求,允许不同的学生有不同的解题方法。而且在这个环节中,我给予学生思考的时间也比较充分,因此部分学生对列表法掌握得还蛮可以的。在教学列表法后,我又引导学生用画图的方式去试着解这种类型的问题。

        3、练习时,选择与学生生活密切联系的例子,如:停车场上停着自行车和三轮车,让学生自主解决,不仅体会到数学与日常生活的联系,而且获得成功的体验,增强学习数学的兴趣和自信心。

        遗憾之处在于:

        1、我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型。

        2、练习时,如能引导学生巧妙综合运用三种列表法,把课上得更精彩、生动一点就更好了。

      鸡兔同笼教案 篇3

        学情分析:

        鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。

        教学目标:

        1.知识与技能:使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。

        2、过程与方法:通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。

        3、情感态度与价值观:使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

        教学重点:

        尝试用不同的方法解决“鸡兔同笼”问题,体会用列表法和假设法解决问题的优越性。

        教学难点:

        理解用假设法解决“鸡兔同笼”问题的算理。

        教学过程:

        一、以史激趣,导入新课:

        同学们,你们知道吗?数学是思维的体操,它可以让我们的头脑越来越聪明。我们*人自古以来就喜欢数学并且研究数学,早在1500年前就有一部数学著作《孙子算经》,那里面记载了许多有趣的数学名题,今天我们就一起研究其中的鸡兔同笼问题。(板书:鸡兔同笼)

        二、独立探索,构建新知:

        (课件出示例题,指名读)鸡兔同笼,有20个头,54条腿,鸡兔各有多少只?

        你从这道题中,找到了什么数学信息?

        (鸡的只数+兔的只数=20只,一只鸡2条腿,一只兔4条腿,鸡的腿数+兔的腿数=54条……)

        这样一道1000多年前的数学名题要大家短时间内找到答案,确实不容易,就让我们先来猜测猜测。(板书:猜测)

        谁先来猜一猜,鸡可能多少只?兔可能多少只?(鸡8只,兔12只)

        能说说你猜测的依据吗?(鸡的只数+兔的只数=20只)

        有了猜测的依据,还有谁想继续猜?(……)

        给老师一个机会,我猜鸡是1只,那兔有几只?(19只)

        怎么知道我猜得对不对?(通过计算来验证)

        (板书并验证)计算的腿的条数是78条和实际的腿的条数不相符,说明我的猜测怎么样?(失败了)

        虽然我的猜测失败了,但如果继续猜测下去,我的这次失败的猜测和验证对以后的猜测有什么启示和帮助吗?(因为78条腿比54条腿多,这就说明兔的只数多了,再猜测应该减少兔的只数,增加鸡的只数。)

        现在,就请同学们在你的练习本上,继续老师黑板上的猜测,如果你有更简单的猜测方法,也可以重新列举一个猜测。

      鸡兔同笼教案 篇4

        教学目标:

        1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。

        2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。

        3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。

        教学重点:会用假设法和方程法解答“鸡兔同笼”问题。

        教学难点:明白用假设法解决“鸡兔同笼”问题的算理。

        教学用具:

        多媒体课件。

        教学过程:

        一、创设情境,引入新课。

        1、引入:

        同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?

        今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?

        这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。

        为便于研究,我们先从简单的生活问题入手,请看下面问题。

        ●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的*票,总票价是260元。两种票各买来了多少张?

        【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。

        二、自主学习、小组探究

        对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。

        温馨提示:

        ①用列举法怎样解决问题?

        ②你能用画图的方法解答吗?

        ③如果把这些票都看成学生票或都看成*票如何解答?

        ④回顾列方程解决问题的经验,怎样用方程解决问题?

        学生自己根据提示用自己喜欢的方法解决问题。

        先把自己的想法在小组内说一说,再共同协商解决。

        教师巡视,要注意发现学生的不同解法,同时参与小组的指导。

        三、汇报交流,评价质疑

        对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。

        1.列举法。

        可以有目的的先展示这种方法。(多媒体展示。)

        学生票数(张)*票数(张)钱数(元)

        2525250

        2426252

        2327254

        2228256

        2129258

        2030260

        质疑:有50张票,是否有必要一一列举,你是如何列举的?

        (引导学生通常先从总数的中间数列举。)

        质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?

        (引导学生根据数据特点确定调整方向、调整幅度。)

        师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)

        2.假设法

        (1)假设全是*票:

        ①为了便于学生理解,展示假设为*票,学生试画的分析图。(图略)

        ②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。

        (学生试着列算式,请两个学生到黑板上去板演。)

        预设板演:

        50×6=300(元)300-260=40(元)40÷(6-4)=20(张)

        50-20=30(张)

        ③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和*票的?

        预设回答:

        假设全是*票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。

        而1张学生票看做*票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,*票就是50-20=30张。

        (2)假设全是学生票:

        如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)

        总结方法归纳抽象出这类问题的模型。

        学生票数=(*票价×总张数-总钱数)÷(*票价-学生票价).

        *票数=(总钱数-学生票数×总张数)÷(*票价-学生票价).

        3、方程法:

        除了以上两种方法,还有别的计算方法了吗?

        学生汇报列方程的方法。

        (1)找出相等的数量关系。

        (学生汇报,课件出示:*票数+学生票数=50;*钱数+学生钱数=260

        元)

        (2)根据等量关系列式:

        设*票有x张,则学生票有(50-x)张。

        列方程为:6x+4(50-x)=260

        (解略)

        4.学生比较以上几种方法解题方法。

        四、抽象概括,总结提升。

        让学生结合自己解决问题的经验,用自己的语言进行总结。

        列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。

        画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。

        假设法:适合所有的这类问题,但比较抽象,不好理解。

        方程法:适用面广,便捷,容易理解。

        师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。

        【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。

        五、巩固应用,拓展提高

        1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)

        温馨提示:

        A.先让学生认真读题,(同桌讨论)。

        B.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。

        2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?

        处理方法:

        ①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。

        ②小组内交流算法。

        ③全班交流。

        【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。

        3、巩固练习:回应解决例题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)

        【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。

        3、全课小结:

        回顾总结,引发思考

        本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。

        师总结:

        这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。

      鸡兔同笼教案 篇5

        第1课时 鸡兔同笼

        教学内容:P116页的练习二十五的第20题。

        教学目标

        知识与技能:通过复习“鸡兔同笼”问题,感受*古代数学问题的趣味性。

        过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。

        情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。

        教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。

        教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。教具学具:多媒体

        教学过程

        一、情境导入

        师:“鸡兔同笼”是一道有名的*古算题。最早出现在《孙子算经》中。许多小数数学问题都可以转化成这类问题。

        师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?

        生1:列表法,适合数据较小的问题。

        生2:假设法,一般情况都适合,数量关系比较容易理解。

        师:今天我们复习“鸡兔同笼”问题。

        二、自主探究

        师:摆三角形和正方形一共用了19根小棒。(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)

        师:星期日,小英一家八口人到博物馆参观,博物馆的票价是*每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)

        师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)

        三、探究结果汇报

        师:通过复习“鸡兔同笼”问题,你有哪些收获?

        生1:借助列表的方法,解决简单的实际问题。

        生2:我学会了化繁为简的学习方法。

        生3:用“假设”法解决问题的一般性。

        四、师生总结收获

        师:通过本课的学习,你有哪些收获?

        师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:假设、调整、检验)

        板书设计

        鸡兔同笼假设→调整(列表、画图)→检验

      鸡兔同笼教案 篇6

        一、教学目标:

        1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

        2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;

        3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。

        二、教材分析

        本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

        三、学校及学生状况分析

        五年级学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。因此,教学在这一内容时,学生的程度参差不齐。本班的`学生思维活跃,敢想,敢说,有一定的小组合组经验。

        四、教学设计

        (一)创设情境

        师:今天这一节课,我们要共同研究鸡兔同笼问题。(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?

        生:鸡兔同笼就是鸡兔在一个笼子里。

        (媒体出示课本第80页的情景图)

        师:请你猜一猜,图中大约有几只兔子,几只鸡?

        生1:我猜大约是7只,兔子5只鸡。

        生2:不一定。因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。

        (二)探求新知

        师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)

        师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。

        师:请同学们把自己的想法在小组内交流一下,看那个小组的方法多样。

        师:哪个小组说说你们的想法?

        小组1:我们采用列表法得出的答案。(实物投影展示小组的成果)先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。

        师:还有哪些小组采用不同的列表法?

        小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。

        小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。

        师:这三个小组的同学都采用了列表的方法来解决问题,但同学们想一想,为什么要列表呢?

        生1:列表可以帮助我们一一举例,从中找出需要的答案。

        生2:列表也就是运用假设法,通过逐步的假设,最终找到符合条件的答案。

        师:那么,这三种列表的方法有什么不同呢?

        生3:我认为第一小组的列表方法的特点是逐一列表,这样不容易遗漏答案。

        生4:虽说第一小组的方法可以完全地列出全部的答案,但比较麻烦。我认为第三组的方法比较好,可以根据题目的根据情况,确定假设的范围,这样可以很快寻找到需要的答案。

        师:这两位同学说得都很有道理,其实同样选择列表的方法,我们因根据题目的实际条件,选择适当的方法,这样可以既快又准确地寻找到我们需要的答案。

        (三)解决问题

        师:根据刚才的讨论,下面两道题目,同学们可以用列表的方法独立地尝试解决。

        媒体出示两道题

        1、鸡兔同笼,有23个头,66条腿,鸡、兔各几只?请你列表的方法解决。

        2、老师带51名学生到公园划船。一条大船坐6人,一条小船坐4人,他们租了大船、小船各几条?

        (学生练习后,教师组织全班进行交流。交流过程略)

        (四)学*结

        师:通过今天的学习,你有哪些收获?

        五、教学反思

        1、充分调动学生的积极性

        当新的问题提出后,我并没有急于讲解如何做的方法,而是先让学生独立思考,再在小组内交流,最后全班共同研究讨论。使同学们在民主、和谐的氛围中开拓了思维,实现了运用多种方法解决问题的目的。

        2、关注每一个同学的发展。

        由于学生原有认知背景的不同,他们对解答本课时的题目存在较大的差异,所以,在同样的列表中,学生的认知水*也有一定的层次。但在教学的过程中,我并没有提出统一的要求,允许不同的学生采用不同的解题方法。在交流时,有些学生用逐一列表的方法,也没去指责他们,而是肯定他们想出好的方法;对于比较优秀的学生,则在课中请他们总结根据题目的条件选择适当方法的优点。这样做的目的,不同的学生在同一节课中就会都有不同程度地提高。

        六、案例点评

        本节课有以下几个特点:

        1、本节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发。

        2、让学生获得亲自参与探究学习的积极体验。探究性学习的过程是情感活动的过程,让学生自主参与类似于科学家研究的学习活动,获得亲身体验,逐步形成一种在日常学习与生活中喜爱质疑、乐于探究、努力求知的心理倾向,激发探究和创新的积极欲望。

      鸡兔同笼教案 篇7

        教学目标

        1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

        2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。

        3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。

        教学过程

        一、故事引入

        教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

        出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

        二、探究新知

        1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

        让学生以两人为一组讨论。

        汇报讨论的结果。

        (1)、列表:

        鸡876543

        兔012345

        脚161820222426

        (2)、假设法:

        假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。

        因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。

        因此,鸡就有:8-5=3(只)

        (3)、用方程解:

        解:设鸡有x只,那么兔就有(8-x)只。

        根据鸡兔共有26只脚来列方程式

        2x+(8-x)4=26

        2x+84-4x=26

        32-26=4x-2x

        2x=6

        x=3

        8-3=5(只)

        2、小结解题方法:

        教师:以上三种解法,哪一种更方便?

        小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。

        3、独立解决书中的趣题。

        (1)、方程解:

        解:设鸡有x只,那么兔就有(35-x)只。

        根据鸡兔共有94只脚来列方程式

        2x+(35-x)4=94

        2x+354-4x=94

        140-94=4x-2x

        2x=46

        x=23

        35-23=12(只)

        答:鸡有23只,兔有12只。

        (2)、算术解:

        假设都是鸡。

        235=70(只)

        94-70=24(只)

        24(4-2)=12(只)

        35-12=23(只)

        答:鸡有23只,兔有12只。

        三、巩固与运用

        1、完成教科书第115页做一做的第1题。

        学生独立读题分析后,列式解答。鼓励用方程解。

        2、完成教科书第115页做一做的第2题。

        提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

        请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

        68=48(人)

        假设8条都是大船可坐48人。

        48-38=10(人)

        假设人数比实际的人数多10人。

        多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

        10(6-4)=5(条)

        8-5=3(条)

        这是表示有3条大船。

        四、作业

        练习二十六第一、二题。

      鸡兔同笼教案 篇8

        一、教学目标:

        1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

        2、在解决“鸡兔同笼”的活动中,尝试通过列表举例、画图分析、尝试计算、列方程等方法解决鸡兔的数量问题。

        3、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

        二、教材分析:

        (一)设计意图:

        通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法(逐一列表法、跳跃式列表法、取中列表法)、假设法、列方程解决问题。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

        (二)设计思路:

        遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。

        在学习中应注意鼓励每个学生参与学习过程,注重学生之间交流,使学生共同学习,共同进步,共同提高,把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。

        教学重点:体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

        三、教学设计:

        <一>、提出问题

        师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”

        问:这段话是什么意思?(生试说)

        师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只? 这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。

        (板书课题:鸡兔同笼问题)

        <二>、解决问题

        师:说明为了研究方便,我们不妨先将题目的条件做一个简化。

        (课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?(同时出示鸡兔同笼情境图)

        师:同学们不妨先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

        学生初步交流,教师提炼:可以用画图的方法、可以用列表法、可以用假设法、还可以用方程的方法。

        师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

        学生思考、分析、探索,接下来小组讨论、交流、争辩。(老师参与其中,启发、点拔、引导适当,师生互动。)

        小组活动充分后进入小组汇报、集体交流阶段。

        师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

        学生汇报探究的方法和结论:

        1:画图法:(学生展示画图方法及步骤)

        ①先画8个头。

        ②每个头下画上两条腿。

        数一数,共有16条腿,比题中给出的腿数少26-16=10条腿。

        ③给一些鸡添上两条腿,叫它变成兔.边添腿边数,凑够26条腿。

        每把一只鸡添上两条腿,它就变成了兔,显然添10条腿就变出来5只兔.这样就得出答案,笼中有5只兔和3只鸡。

        2.列表法:

        (展示学生所列表格)

        学生说明列表的方法及步骤:

        学生汇报:我们先假设有8只兔这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。

        鸡 8 7 6 5 4 3 2 1

        兔 0 1 2 3 4 5 6 7

        脚 16 18 20 22 24 26

        鸡 8 7 6 5 4 3 2 1

        兔 0 1 2 3 4 5 6 7

        脚 16 18 20 22 24 26

        学生汇报:我们组得出的结果也是只3鸡、5只兔,但我们不是一个一个地试,这样太麻烦了,我们是2个2个地试。

        鸡 8 6 4 3

        兔 0 2 4 5

        脚 16 20 24 26

    • 相关热词搜索: 合集 教案 鸡兔同笼教案合集八篇 鸡兔同笼专题教案 鸡兔兔同笼教案 鸡兔同笼优质课教案ppt
    • 上一篇:2023年幼儿园美术教案,荟萃20篇(完整)
    • 下一篇:幼儿园中班三八妇女节美术教案【优秀范文】
    • 推荐排行
    • 从小学党史永远跟党走主题班会教案1
    • 大班安吉游戏活动教案7篇
    • 军神教案一等奖_雨月网9篇
    • 小学四年级安全教育教案3篇
    • 小班舞蹈小鸭子嘎嘎嘎教案3篇范本
    • 七年级历史人教版教案(全文)
    • 廉洁从教案例5篇
    • 大班科学我是小中医教案与反思3篇(
    • 幼儿园小班教案《我真棒》
    • 2023年新冠病毒大揭秘科学大班教案3篇
    • 随即浏览
    • 某市四季度区县主要经济指标完成...
    • 讲稿:“E网”莫情深 无“网”而...
    • 2024年党课:深入理解和把握中国...
    • 2024法院读书比赛演讲稿:权利是...
    • 2024个人对照检视材料(党员)(...
    • 2024年街道妇联绿色家庭创建工作...
    • 2024年校长在“中国式现代化道路...
    • 主题教育民主生活会个人对照检查...
    • 2024年新入职公务员个人工作总结...
    • 2024年党委民主生活会党委班子整...
    • 市局党建工作计划(完整文档)
    • 2024年党建责任制实施方案(完整...
    • 党委学习讨论会暨全镇一季度工作...
    • 2024年街道党委书记抓党建述职报...
    • 2024年局机关综合股工作总结暨工...
    • 2024年国企领导班子成员述职述廉...
    • 县委书记在全市干部队伍建设调研...
    • 在全县生态环境问题排查整治工作...
    • 高校党建与业务融合交流材料【精...
    • 2024年政法委书记在全市打击治理...
    • 版权所有:利星文库网 2019-2025 未经授权禁止复制或建立镜像[利星文库网]所有资源完全免费共享
    • Powered by 利星文库网 © All Rights Reserved.。备案号:豫ICP备19043618号-1