广东高考数学不等式与线性规划填空题1 1.已知变量x,y满足则u=log4(2x+y+4)+的最大值为________. 答案:2 解题思路:满足的可行域如图中阴影所示, 令z=2x+y+4,下面是小编为大家整理的2023年度广东高考数学不等式与线性规划填空题,菁选2篇,供大家参考。
1.已知变量x,y满足则u=log4(2x+y+4)+的最大值为________.
答案:2 解题思路:满足的可行域如图中阴影所示,
令z=2x+y+4,
则y=-2x+(z-4).
将虚线上移,得到y=-2x+(z-4)过直线2x-y=0与x-2y+3=0的交点时最大.又即过(1,2)时,zmax=2+2+4=8,
故u=log4(2x+y+4)+的最大值是log48+=log2223+=+=2.
2.已知向量a=(1,-2),M是*面区域内的动点,O是坐标原点,则a·的最小值是________.
答案:-3 命题立意:本题考查*面向量的数量积运算、简单的线性规划问题,考查学生的作图能力、计算能力,难度中等.
解题思路:作出线性约束条件表示的可行域如图所示,
设可行域内任意点M(x,y),则=(x,y).因为a=(1,-2),所以a·=(1,-2)·(x,y)=x-2y.令z=x-2y,则y=-,作出直线y=-,可以发现当其过点(1,2)时,-有最大值,z有最小值.将x=1,y=2代入,得zmin=1-4=-3.
3.设x,y满足约束条件则x2+y2的最大值与最小值之和为______.
答案: 命题立意:本题主要考查二元一次不等式组表示的*面区域及数形结合思想,意在考查考生分析问题、解决问题的能力.
解题思路:作出约束条件
表示的可行域,如图中阴影部分所示.
由图可知x2+y2的最大值在x-2y=-2与3x-2y=3的交点处取得,解得交点坐标为,所以x2+y2的最大值为,最小值是原点到直线x+y=1的距离的*方,即为,故所求的和为.
4.若{(x,y)|x2+y2≤25},则实数b的取值范围是________.
答案:[0,+∞) 解题思路:如图,若(x,y)x-2y+5≥0,3-x≥0,y≥-x+b非空,(x,y)x-2y+5≥0,3-x≥0,y≥-x+b{(x,y)|x2+y2≤25},则直线y=-x+b在直线y=-x与直线y=-x+8之间*行移动,故0≤b≤8;若(x,y)x-2y+5≥0,3-x≥0,y≥-x+b为空集,则b>8,故b的取值范围是[0,+∞).
5.若不等式组表示的*面区域的面积为3,则实数a的值是________.
1、定比分点
定比分点公式(向量P1P=λ?向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ?向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+λOP2)(1+λ);(定比分点向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
2、三点共线定理
若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
[编辑本段]向量共线的重要条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是 xy"-x"y=0。
零向量0*行于任何向量。
[编辑本段]向量垂直的充要条件
a⊥b的充要条件是 a?b=0。
a⊥b的充要条件是 xx"+yy"=0。
零向量0垂直于任何向量.
设a=(x,y),b=(x",y")。
3、向量的加法
向量的加法满足*行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x",y+y")。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
4、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即“共同起点,指向被减”
a=(x,y) b=(x",y") 则 a-b=(x-x",y-y").